Decreasing product life cycles and reduced product development times have led to a need for new strategies for coping with the rapid rate of product family design changes. In this paper, assembly system reconfiguration planning (ASRP) is introduced as a method for cost effectively designing several generations of assembly systems in order to produce a product family that gradually evolves over time. In the ASRP approach, the possible assembly systems for each generation are first considered and then the sequence of assembly system configurations that minimize the life cycle cost of the process are selected. A nonlinear integer optimization formulation is developed for finding the cost minimizing assembly system reconfiguration plan using the ASRP approach. Dynamic programming and genetic algorithm are used to solve the optimization problem. Simulation results indicate that the ASRP approach leads to the minimum life cycle costs of the assembly system, and the relative cost of reconfiguration and production have an impact on the assembly system reconfiguration plan selected. Comparison of the results of the dynamic program and genetic algorithm indicate that the dynamic program is more computationally efficient for small problems and genetic algorithm is preferred for larger problems.

References

References
1.
Koren
,
Y.
,
2010
,
The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Giffin
,
M.
,
de Weck
,
O.
,
Bounova
,
G.
,
Keller
,
R.
,
Eckert
,
C.
, and
Clarkson
,
P.
,
2009
, “
Change Propagation Analysis in Complex Technical Systems
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081001
.10.1115/1.3149847
3.
Smaling
,
R.
, and
de Weck
,
O.
,
2007
, “
Assessing Risks and Opportunities of Technology Infusion in System Design
,”
Syst. Eng.
,
10
(
1
), pp.
1
25
.10.1002/sys.20061
4.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.10.1016/0048-7333(94)00775-3
5.
Simpson
,
T. W.
,
Maier
,
J. R.
, and
Mistree
,
F.
,
2001
, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
,
13
(
1
), pp.
2
22
.10.1007/s001630100002
6.
Seepersad
,
C. C.
,
Mistree
,
F.
, and
Allen
,
J. K.
,
2005
, “
Designing Evolving Families of Products Using the Utility-Based Compromise Decision Support Problem
,”
Int. J. Mass Customisation
,
1
(
1
), pp.
37
64
.10.1504/IJMASSC.2005.007350
7.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Perez-Duarte
,
A.
,
2005
, “
Platform Selection Under Performance Bounds in Optimal Design of Product Families
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
524
535
.10.1115/1.1899176
8.
Williams
,
C. B.
,
Allen
,
J. K.
,
Rosen
,
D. W.
, and
Mistree
,
F.
,
2007
, “
Designing Platforms for Customizable Products and Processes in Markets of Non-Uniform Demand
,”
Concurr. Eng. Res. Appl.
,
15
(
2
), pp.
201
216
.10.1177/1063293X07079328
9.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
.10.1016/S0142-694X(01)00004-7
10.
Martin
,
M.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.10.1007/s00163-002-0020-2
11.
Fixson
,
S. K.
,
2003
, “
The Multiple Faces of Modularity—A Literature Analysis of a Product Concept for Assembled Hardware Products
,” University of Michigan, Ann Arbor, MI, Technical Report No. 03-05.
12.
Koren
,
Y.
,
Heisel
,
U.
,
Jovane
,
F.
,
Moriwaki
,
T.
,
Pritschow
,
G.
,
Ulsoy
,
G.
, and
Van Brussel
,
H.
,
1999
, “
Reconfigurable Manufacturing Systems
,”
CIRP Ann. - Manuf. Technol.
,
48
(
2
), pp.
527
540
.10.1016/S0007-8506(07)63232-6
13.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
29
(
4
), pp.
130
141
.10.1016/j.jmsy.2011.01.001
14.
Koren
,
Y.
, and
Ulsoy
,
A. G.
,
2002
, “
Reconfigurable Manufacturing Systems Having a Production Capacity Method for Designing Same and Method for Changing its Production Capacity
,” U.S. Patent No. 6,349,237.
15.
Maier-Speredelozzi
, V
.
,
Koren
,
Y.
, and
Hu
,
S. J.
,
2003
, “
Convertibility Measures for Manufacturing Systems
,”
CIRP Ann.
,
52
(
1
), pp.
367
371
.10.1016/S0007-8506(07)60603-9
16.
Spicer
,
P.
, and
Carlo
,
H. J.
,
2007
, “
Integrating Reconfiguration Cost Into the Design of Multi-Period Scalable Reconfigurable Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
202
210
.10.1115/1.2383196
17.
Son
,
S. Y.
,
Olsen
,
T. L.
, and
Yip-Hoi
,
D.
,
2001
, “
An Approach to Scalability and Line Balancing for Reconfigurable Manufacturing Systems
,”
Integr. Manuf. Syst.
,
12
(
7
), pp.
500
511
.10.1108/09576060110407815
18.
Abdi
,
M. R.
, and
Labib
,
A. Y.
,
2004
, “
Grouping and Selecting Products: The Design Key of Reconfigurable Manufacturing Systems
,”
Int. J. Prod. Res.
,
42
(
3
), pp.
521
546
.10.1080/00207540310001613665
19.
Bryan
,
A.
,
Ko
,
J.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2007
, “
Co-Evolution of Product Families and Assembly Systems
,”
CIRP Ann. - Manuf. Technol.
,
56
(
1
), pp.
41
44
.10.1016/j.cirp.2007.05.012
20.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2012
, “
A Co-Evolution Model for Prediction and Synthesis of New Products and Manufacturing Systems
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051008
.10.1115/1.4006439
21.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2007
, “
Concurrent Design of Product Families and Assembly Systems
,” Proceedings of the
ASME
2007 International Manufacturing Science and Engineering Conference,
Atlanta, GA
, Oct. 15–18, pp.
803
813
.10.1115/MSEC2007-31081
22.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2008
, “
Assembly System Reconfiguration Planning Using Genetic Algorithm
,” Proceedings of the
ASME
2008 Engineering Systems Design and Analysis Conference, Haifa, Israel, July 7–9, pp.
163
171
.10.1115/ESDA2008-59066
23.
Gamberini
,
R.
,
Grassi
,
A.
, and
Rimini
,
B.
,
2006
, “
A New Multi-Objective Heuristic Algorithm for Solving the Stochastic Assembly Line Re-Balancing Problem
,”
Int. J. Prod. Econ.
,
102
(
2
), pp.
226
243
.10.1016/j.ijpe.2005.02.013
24.
Ko
,
J.
, and
Hu
,
S. J.
,
2007
, “
Manufacturing System Design Considering Generational Product Evolution and Task Recurrence
,”
ASME
2007 International Manufacturing Science and Engineering Conference,
Atlanta, GA
, Oct. 15–18, pp.
815
826
.10.1115/MSEC2007-31090
25.
Siddique
,
Z.
, and
Rosen
,
D. W.
,
2001
, “
On Combinatorial Design Spaces for the Configuration Design of Product Families
,”
Artif. Intell. Eng. Des., Anal. Manuf.
,
15
(
2
), pp.
91
108
.10.1017/S0890060401152029
26.
Nevins
,
J. L.
, and
Whitney
,
D. E.
,
1980
, “
Assembly Research
,”
Automatica
,
16
(
6
), pp.
595
613
.10.1016/0005-1098(80)90003-5
27.
Homem de Mello
,
L. S.
, and
Sanderson
,
A. C.
,
1991
, “
A Correct and Complete Algorithm for the Generation of Mechanical Assembly Sequences
,”
IEEE Trans. Rob. Autom.
,
7
(
2
), pp.
228
240
.10.1109/70.75905
28.
Webbink
,
R. F.
, and
Hu
,
S. J.
,
2005
, “
Automated Generation of Assembly-System Design Solutions
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
1
), pp.
32
39
.10.1109/TASE.2004.840072
29.
Ye
,
H.
, and
Liang
,
M.
,
2006
, “
Simultaneous Modular Product Scheduling and Manufacturing Cell Reconfiguration Using a Genetic Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
984
995
.10.1115/1.2336261
30.
Michalek
,
J.
,
Ceryan
,
O.
,
Papalambros
,
P. Y.
, and
Koren
,
Y.
,
2006
, “
Balancing Marketing and Manufacturing Objectives in Product Line Design
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1196
1204
.10.1115/1.2336252
31.
Denardo
,
E. V.
,
2003
,
Dynamic Programming: Models and Applications
,
Dover Publications
,
Mineola, NY
.
32.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
The University of Michigan Press
,
Ann Arbor, MI
.
33.
Niu
,
X.
,
Ding
,
H.
, and
Xiong
,
Y.
,
2003
, “
A Hierarchical Approach to Generating Precedence Graphs for Assembly Planning
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1473
1486
.10.1016/S0890-6955(03)00168-8
34.
Becker
,
C.
, and
Scholl
,
A.
,
2006
, “
A Survey on Problems and Methods in Generalized Assembly Line Balancing
,”
Eur. J. Oper. Res.
,
168
(
3
), pp.
694
715
.10.1016/j.ejor.2004.07.023
35.
Jackson
,
J.
,
1956
, “
A Computing Procedure for a Line Balancing Problem
,”
Manage. Sci.
,
2
(
3
), pp.
261
271
.10.1287/mnsc.2.3.261
36.
Thomopoulos
,
N. T.
,
1967
, “
Line Balancing-Sequencing for Mixed-Model Assembly
,”
Manage. Sci.
,
14
(
2
), pp.
B59
B75
.10.1287/mnsc.14.2.B59
37.
Rekiek
,
B.
,
De Lit
,
P.
, and
Delchambre
,
A.
,
2000
, “
Designing Mixed-Product Assembly Lines
,”
IEEE Trans. Rob. Autom.
,
16
(
3
), pp.
268
280
.10.1109/70.850645
38.
Askin
,
R. G.
, and
Zhou
,
M.
,
1997
, “
A Parallel Station Heuristic for the Mixed-Model Production Line Balancing Problem
,”
Int. J. Prod. Res.
,
35
(
11
), pp.
3095
3105
.10.1080/002075497194309
39.
Kouvelis
,
P.
,
Kurawarwala
,
A. A.
, and
Gutierrez
,
G. J.
,
1992
, “
Algorithms for Robust Single and Multiple Period Layout Planning for Manufacturing Systems
,”
Eur. J. Oper. Res.
,
63
(
2
), pp.
287
203
.10.1016/0377-2217(92)90032-5
40.
Baybars
,
I.
,
1986
, “
A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem
,”
Manage. Sci.
,
32
(
8
), pp.
909
932
.10.1287/mnsc.32.8.909
You do not currently have access to this content.