In the manufacturing of micro/nanocomposite materials, micro/nanoparticles need to be dispersed evenly into the base materials. However, due to their high surface-to-volume ratio and high surface energy, the micro/nanoparticles tend to agglomerate and cluster together. Ultrasonic cavitation is effective to disperse micro/nanoparticles. However, works on correlating the cavitation parameters with the micro/nanoparticle dispersion are limited. This paper presents a real-time acoustic monitoring method based on cavitation noises to monitor the micro/nanoparticle dispersion status. In this paper, two types of cavitation noise power indices computed based on the raw cavitation noise signals are used to monitor the cavitation status. Both off-line and on-line steady state detection algorithms are developed. These algorithms can be used to determine the critical process parameters including the power of the ultrasonic sound and the dispersion time. Extensive experiments have been conducted to illustrate the effectiveness of the developed methods.

References

References
1.
He
,
F.
,
Han
,
Q.
, and
Jackson
,
M. J.
,
2008
, “
Nanoparticulate Reinforced Metal Matrix Nanocomposites—A Review
,”
Int. J. Nanoparticles
,
1
(
4
), pp.
301
309
.10.1504/IJNP.2008.026473
2.
Bakshi
,
S.
,
Lahiri
,
D.
, and
Agarwal
,
A.
,
2010
, “
Carbon Nanotube Reinforced Metal Matrix Composites—A Review
,”
Int. Mater. Rev.
,
55
(
1
), pp.
41
64
.10.1179/095066009X12572530170543
3.
Arsenault
,
R.
,
Wang
,
L.
, and
Feng
,
C.
,
1991
, “
Strengthening of Composites Due to Microstructural Changes in the Matrix
,”
Acta Metall. Mater.
,
39
(
1
), pp.
47
57
.10.1016/0956-7151(91)90327-W
4.
Nardone
,
V.
, and
Prewo
,
K.
,
1986
, “
On the Strength of Discontinuous Silicon Carbide Reinforced Aluminum Composites
,”
Scr. Metall.
,
20
(
1
), pp.
43
48
.10.1016/0036-9748(86)90210-3
5.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized Sic Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng., A
,
380
(
1
), pp.
378
383
.10.1016/j.msea.2004.03.073
6.
Cao
,
G.
,
Konishi
,
H.
, and
Li
,
X.
,
2008
, “
Mechanical Properties and Microstructure of Mg/SiC Nanocomposites Fabricated by Ultrasonic Cavitation Based Nanomanufacturing
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p. 031105.10.1115/1.2823086
7.
Gedanken
,
A.
,
2007
, “
Doping Nanoparticles Into Polymers and Ceramics Using Ultrasound Radiation
,”
Ultrason. Sonochem.
,
14
(
4
), pp.
418
430
.10.1016/j.ultsonch.2006.08.005
8.
Yang
,
Y.
, and
Li
,
X.
,
2007
, “
Ultrasonic Cavitation-Based Nanomanufacturing of Bulk Aluminum Matrix Nanocomposites
,”
ASME J. Manuf. Sci. Eng.
,
129
(2), pp.
252
–255.10.1115/1.2194064
9.
Li
,
X.
,
Yang
,
Y.
, and
Weiss
,
D.
,
2007
, “
Ultrasonic Cavitation Based Dispersion of Nanoparticles in Aluminum Melts for Solidification Processing of Bulk Aluminum Matrix Nanocomposite: Theoretical Study, Fabrication and Characterization
,”
AFS Trans.
,
115
, Paper No. 07-133(02), p. 249.
10.
Bittmann
,
B.
,
Haupert
,
F.
, and
Schlarb
,
A. K.
,
2009
, “
Ultrasonic Dispersion of Inorganic Nanoparticles in Epoxy Resin
,”
Ultrason. Sonochem.
,
16
(
5
), pp.
622
628
.10.1016/j.ultsonch.2009.01.006
11.
Gibson
,
J. H.
,
Hon
,
H.
,
Farnood
,
R.
,
Droppo
,
I. G.
, and
Seto
,
P.
,
2009
, “
Effects of Ultrasound on Suspended Particles in Municipal Wastewater
,”
Water Research
,
43
(
8
), pp.
2251
2259
.10.1016/j.watres.2009.02.024
12.
Suslick
,
K. S.
,
Didenko
,
Y.
,
Fang
,
M. M.
,
Hyeon
,
T.
,
Kolbeck
,
K. J.
,
McNamara
,
W. B.
,
Mdleleni
,
M. M.
, and
Wong
,
M.
,
1999
, “
Acoustic Cavitation and Its Chemical Consequences
,”
Philos. Trans. R. Soc. London
, Ser. A,
357
(
1751
), pp.
335
353
.10.1098/rsta.1999.0330
13.
Neppiras
,
E. A.
,
1980
, “
Acoustic Cavitation
,”
Phys. Rep.
,
61
(
3
), pp.
159
251
.10.1016/0370-1573(80)90115-5
14.
Hentschel
,
W.
, and
Lauterborn
,
W.
,
1984
, “
New Speed Record in Long Series Holographic Cinematography
,”
Appl. Opt.
,
23
(
19
), pp.
3263
3265
.10.1364/AO.23.003263
15.
Lauterborn
,
W.
, and
Hentschel
,
W.
,
1985
, “
Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part One
,”
Ultrasonics
,
23
(
6
), pp.
260
268
.10.1016/0041-624X(85)90048-4
16.
Burdin
,
F.
,
Tsochatzidis
,
N.
,
Guiraud
,
P.
,
Wilhelm
,
A.
, and
Delmas
,
H.
,
1999
, “
Characterisation of the Acoustic Cavitation Cloud by Two Laser Techniques
,”
Ultrason. Sonochem.
,
6
(
1–2
), pp.
43
51
.10.1016/S1350-4177(98)00035-2
17.
Tsochatzidis
,
N.
,
Guiraud
,
P.
,
Wilhelm
,
A.
, and
Delmas
,
H.
,
2001
, “
Determination of Velocity, Size and Concentration of Ultrasonic Cavitation Bubbles by the Phase-Doppler Technique
,”
Chem. Eng. Sci.
,
56
(
5
), pp.
1831
1840
.10.1016/S0009-2509(00)00460-7
18.
Nishi
,
R.
,
1975
, “
The Scattering and Absorption of Sound Waves by a Gas Bubble in a Viscous Liquid
,”
Acustica
,
33
(
2
), pp.
65
74
.
19.
Duraiswami
,
R.
,
Prabhukumar
,
S.
, and
Chahine
,
G. L.
,
1998
, “
Bubble Counting Using an Inverse Acoustic Scattering Method
,”
J. Acoust. Soc. Am.
,
104
, pp.
2699
–2717.10.1121/1.423854
20.
Vaughan
,
P.
,
1968
, “
Investigation of Acoustic Cavitation Thresholds by Observation of the First Subharmonic
,”
J. Sound Vib.
,
7
(
2
), pp.
236
246
.10.1016/0022-460X(68)90270-8
21.
Neppiras
,
E.
,
1969
, “
Subharmonic and Other Low-Frequency Emission From Bubbles in Sound-Irradiated Liquids
,”
J. Acoust. Soc. Am.
,
46
, pp.
587
–601.10.1121/1.1911735
22.
Avvaru
,
B.
, and
Pandit
,
A. B.
,
2009
, “
Oscillating Bubble Concentration and Its Size Distribution Using Acoustic Emission Spectra
,”
Ultrason. Sonochem.
,
16
(
1
), pp.
105
115
.10.1016/j.ultsonch.2008.07.003
23.
Puga
,
H.
,
Barbosa
,
J.
,
Gabriel
,
J.
,
Seabra
,
E.
,
Ribeiro
,
S.
, and
Prokic
,
M.
,
2011
, “
Evaluation of Ultrasonic Aluminium Degassing by Piezoelectric Sensor
,”
J. Mater. Process. Technol.
,
211
, pp. 1026–1033.
24.
Labouret
,
S.
,
Frohly
,
J.
, and
Rivart
,
F.
,
2006
, “
Evolution of an 1 MHz Ultrasonic Cavitation Bubble Field in a Chopped Irradiation Mode
,”
Ultrason. Sonochem.
,
13
(
4
), pp.
287
294
.10.1016/j.ultsonch.2005.04.004
25.
Frohly
,
J.
,
Labouret
,
S.
,
Bruneel
,
C.
,
Looten-Baquet
,
I.
, and
Torguet
,
R.
,
2000
, “
Ultrasonic Cavitation Monitoring by Acoustic Noise Power Measurement
,”
J. Acoust. Soc. Am.
,
108
, pp.
2012
–2020.10.1121/1.1312360
26.
Hodnett
,
M.
,
Chow
,
R.
, and
Zeqiri
,
B.
,
2004
, “
High-Frequency Acoustic Emissions Generated by a 20 kHz Sonochemical Horn Processor Detected Using a Novel Broadband Acoustic Sensor: A Preliminary Study
,”
Ultrason. Sonochem.
,
11
(
6
), pp.
441
454
.10.1016/j.ultsonch.2003.09.002
27.
Ilyichev
,
V.
,
Koretz
,
V.
, and
Melnikov
,
N.
,
1989
, “
Spectral Characteristics of Acoustic Cavitation
,”
Ultrasonics
,
27
(
6
), pp.
357
361
.10.1016/0041-624X(89)90034-6
28.
Lauterborn
,
W.
,
1976
, “
Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids
,”
J. Acoust. Soc. Am.
,
59
, pp.
283
–293.10.1121/1.380884
29.
Prosperetti
,
A.
,
Crum
,
L. A.
, and
Commander
,
K. W.
,
1988
, “
Nonlinear Bubble Dynamics
,”
J. Acoust. Soc. Am.
,
83
, pp.
502
–514.10.1121/1.396145
30.
Young
,
F. R.
,
1989
,
Cavitation
,
McGraw-Hill
,
New York
.
31.
Güth
,
W.
,
1956
, “
Nichtlineare Schwingungen von Luftblasen in Wasser
,”
Acustica
,
6
, pp.
532
538
.
32.
Coleman
,
A.
,
Choi
,
M.
,
Saunders
,
J.
, and
Leighton
,
T.
,
1992
, “
Acoustic Emission and Sonoluminescence Due to Cavitation at the Beam Focus of an Electrohydraulic Shock Wave Lithotripter
,”
Ultrasound Med. Biol.
,
18
(
3
), pp.
267
281
.10.1016/0301-5629(92)90096-S
33.
Yasui
,
K.
,
Tuziuti
,
T.
,
Kozuka
,
T.
, and
Towata
,
A.
, 2010, “
Origin of the Broad-Band Noise in Acoustic Cavitation
,” Proceedings of the 20th International Congress on Acoustics (ICA), Sydney, Australia, Aug. 23–27, pp. 23–27.
34.
Spratt
,
S.
,
1998
,
Heuristics for the Startup Problem
, M.S. thesis, Department of Systems Engineering, University of Virginia, Charlottesville, VA.
35.
Allegra
,
J. R.
, and
Hawley
,
S. A.
,
1972
, “
Attenuation of Sound in Suspensions and Emulsions: Theory and Experiments
,”
J. Acoust. Soc. Am.
,
51
(
5B
), pp.
1545
1564
.10.1121/1.1912999
36.
Cash
,
C. R.
,
Nelson
,
B. L.
,
Dippold
,
D. G.
,
Long
,
J. M.
, and
Pollard
,
W. P.
,
1992
, “
Evaluation of Tests for Initial-Condition Bias
,” Proceedings of the 24th Conference on Winter Simulation,
ACM
, pp.
577
585
10.1145/167293.167640.
37.
Goldsman
,
D.
,
Schruben
,
L. W.
, and
Swain
,
J. J.
,
1994
, “
Tests for Transient Means in Simulated Time Series
,”
Naval Research Logistics (NRL)
,
41
(
2
), pp.
171
187
.10.1002/1520-6750(199403)41:2<171::AID-NAV3220410204>3.0.CO;2-N
38.
Robinson
,
S.
,
2002
, “
A Statistical Process Control Approach for Estimating the Warm-Up Period
,” Proceedings of the 2002 Winter Simulation Conference,
IEEE
, Vol. 1, pp.
439
446
.10.1109/WSC.2002.1172915
39.
Franklin
,
W. W.
,
2009
, “
The Theoretical Foundation of the MSER Algorithm
,” Ph.D. thesis, Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA.
40.
Cao
,
S.
, and
Rhinehart
,
R. R.
,
1995
, “
An Efficient Method for On-Line Identification of Steady State
,”
J. Process Control
,
5
(
6
), pp.
363
374
.10.1016/0959-1524(95)00009-F
41.
Cao
,
S.
,
1996
, “
Statistically Based Techniques for Process Control Applications
,” Ph.D. thesis, Chemical Engineering, Texas Tech University, Lubbock, TX.
42.
White
,
K. P.
, Jr.
,
1997
, “
An Effective Truncation Heuristic for Bias Reduction in Simulation Output
,”
Simulation
,
69
(
6
), pp.
323
334
.10.1177/003754979706900601
43.
White
,
K. P.
, Jr.
,
Cobb
,
M. J.
, and
Spratt
,
S. C.
,
2000
, “
A Comparison of Five Steady-State Truncation Heuristics for Simulation
,” Proceedings of the 2000 Winter Simulation Conference,
IEEE
, Vol. 1, pp.
755
760
.10.1109/WSC.2000.899843
44.
Crow
,
E. L.
,
Davis
,
F. A.
, and
Maxfield
,
M. W.
,
1960
,
Statistics Manual: With Examples Taken From Ordinance Development
,
Dover
,
New York
.
You do not currently have access to this content.