The equipment degradation and various maintenance decision processes with unreliable machines have been studied extensively. The traditional degradation modeling using Markov process only focuses on single machine system and ignores maintenance or repair duration. This paper is devoted to analytical and numerical study of production lines within the Markov process framework considering repair time and periodic inspection. Nonexponential holding time distributions in Markov chain are approximated by inserting multiple intermediate states based on a phase-type distribution. Overall system availability is calculated by recursively solving the balance equations of the Markov process. The results show that the optimal inspection intervals for two repairable-machine systems can be achieved by means of the proposed method. By having an adequate model representing both deterioration and maintenance processes, it is also possible to obtain different optimal maintenance policies to maximize the availability or productivity for different configurations of components.

References

References
1.
Pierskalla
,
W. P.
, and
Voelker
,
J. A.
,
1976
, “
A Survey of Maintenance Models: The Control and Surveillance of Deteriorating Systems
,”
Nav. Res. Logistics Quart.
,
23
(
3
), pp.
353
388
.10.1002/nav.3800230302
2.
Valdez-Flores
,
C.
, and
Feldman
,
R. M.
,
1989
, “
A Survey of Preventive Maintenance Models for Stochastically Deteriorating Single-Unit Systems
,”
Naval Res. Logistics
,
36
(
4
), pp.
419
446
.10.1002/1520-6750(198908)36:4<419::AID-NAV3220360407>3.0.CO;2-5
3.
Scarf
,
P. A.
,
1997
, “
On the Application of Mathematical Models in Maintenance
,”
Eur. J. Oper. Res.
,
99
(
3
), pp.
493
506
.10.1016/S0377-2217(96)00316-5
4.
Dekker
,
R.
,
1996
, “
Applications of Maintenance Optimization Models: A Review and Analysis
,”
Reliab. Eng. Syst. Saf.
,
51
(
3
), pp.
229
240
.10.1016/0951-8320(95)00076-3
5.
Chan
,
G. K.
, and
Asgarpoor
,
S.
,
2006
, “
Optimum Maintenance Policy With Markov Processes
,”
Electr. Power Syst. Res.
,
76
(
6–7
), pp.
452
456
.10.1016/j.epsr.2005.09.010
6.
Chen
,
D.
, and
Trivedi
,
K. S.
,
2002
, “
Closed-Form Analytical Results for Condition-Based Maintenance
,”
Reliab. Eng. Syst. Saf.
,
76
(
1
), pp.
43
51
.10.1016/S0951-8320(01)00141-7
7.
Maillart
,
L. M.
,
2006
, “
Maintenance Policies for Systems With Condition Monitoring and Obvious Failures
,”
IIE Trans.
,
38
(
6
), pp.
463
475
.10.1080/074081791009059
8.
Das
,
T. K.
,
Gosavi
,
A.
,
Mahadevan
,
S.
, and
Marchalleck
,
N.
,
1999
, “
Solving Semi-Markov Decision Problems Using Average Reward Reinforcement Learning
,”
Manage. Sci.
,
45
(
4
), pp.
560
574
.10.1287/mnsc.45.4.560
9.
Berenguer
,
C.
,
Chu
,
C. B.
, and
Grall
,
A.
,
1997
, “
Inspection and Maintenance Planning: An Application of Semi-Markov Decision Processes
,”
J. Intell. Manuf.
,
8
(
5
), pp.
467
476
.10.1023/A:1018570518804
10.
Chen
,
D.
, and
Trivedi
,
K. S.
,
2005
, “
Optimization for Condition-Based Maintenance With Semi-Markov Decision Process
,”
Reliab. Eng. Syst. Saf.
,
90
(
1
), pp.
25
29
.10.1016/j.ress.2004.11.001
11.
Sim
,
S. H.
, and
Endrenyi
,
J.
,
1988
, “
Optimal Preventive Maintenance With Repair
,”
IEEE Trans. Reliab.
,
37
(
1
), pp.
92
96
.10.1109/24.3721
12.
Sim
,
S. H.
, and
Endrenyi
,
J.
,
1993
, “
A Failure-Repair Model With Minimal and Major Maintenance
,”
IEEE Trans. Reliab.
,
42
(
1
), pp.
134
140
.10.1109/24.210285
13.
Cho
,
D. I.
, and
Parlar
,
M.
,
1991
, “
A Survey of Maintenance Models for Multiunit Systems
,”
Eur. J. Oper. Res.
,
51
(
1
), pp.
1
23
.10.1016/0377-2217(91)90141-H
14.
Wang
,
W.
, and
Christer
,
A. H.
,
2003
, “
Solution Algorithms for a Nonhomogeneous Multi-Component Inspection Model
,”
Comput. Oper. Res.
,
30
(
1
), pp.
19
34
.10.1016/S0305-0548(01)00074-0
15.
Sherif
,
Y. S.
, and
Smith
,
M. L.
,
1981
, “
Optimal Maintenance Models for Systems Subject to Failure—A Review
,”
Naval Res. Logistics Quart.
,
28
(
1
), pp.
47
74
.10.1002/nav.3800280104
16.
Assaf
,
D.
, and
Shanthikumar
,
J. G.
,
1987
, “
Optimal Group Maintenance Policies With Continuous and Periodic Inspections
,”
Manage. Sci.
,
33
(
11
), pp.
1440
1452
.10.1287/mnsc.33.11.1440
17.
Das
,
K.
,
Lashkari
,
R. S.
, and
Sengupta
,
S.
,
2007
, “
Machine Reliability and Preventive Maintenance Planning for Cellular Manufacturing Systems
,”
Eur. J. Oper. Res.
,
183
(
1
), pp.
162
180
.10.1016/j.ejor.2006.09.079
18.
Osogami
,
T.
, and
Harchol-Balter
,
M.
,
2006
, “
Closed Form Solutions for Mapping General Distributions to Quasi-Minimal PH Distributions
,”
Perform. Eval.
,
63
(
6
), pp.
524
552
.10.1016/j.peva.2005.06.002
19.
David
,
A.
, and
Larry
,
S.
,
1987
, “
The Least Variable Phase Type Distribution is Erlang
,”
Stoch. Models
,
3
(
3
), pp.
467
473
.10.1080/15326348708807067
20.
Ruiz-Castro
,
J. E.
,
Fernandez-Villodre
,
G.
, and
Perez-Ocon
,
R.
,
2009
, “
A Level-Dependent General Discrete System Involving Phase-Type Distributions
,”
IIE Trans.
,
41
(
1
), pp.
45
56
.10.1080/07408170802322663
21.
Ross
,
S. M.
,
1996
,
Stochastic Processes, Probability and Statistics
,
John Wiley & Sons, Inc.
, New York.
22.
Meerkov
,
S. M.
, and
Zhang
,
L.
,
2008
, “
Transient Behavior of Serial Production Lines With Bernoulli Machines
,”
IIE Trans.
,
40
(
3
), pp.
297
312
.10.1080/07408170701488037
23.
Rabiner
,
L. R.
,
1989
, “
A Tutorial on Hidden Markov-Models and Selected Applications in Speech Recognition
,”
Proc. IEEE
,
77
(
2
), pp.
257
286
.10.1109/5.18626
You do not currently have access to this content.