As a key advanced manufacturing technology in next generation manufacturing systems, radio frequency identification (RFID) technology is considered to be one of the most promising technological innovations with the potential to increase visibility and improve efficiency. Therefore, research about RFID and its applications are increasing by blasting with all kinds of RFID models in various fields, especially in manufacturing. By introducing RFID technology into the job-shop floor, this paper proposes a systematic RFID-driven graphical formalized deduction model (rfid-GFDM) for describing the time-sensitive state and position changes of work-in-progress (WIP) material flows and guiding where to deploy RFID devices and how to use them for collecting real-time on-site data. Four steps including RFID configuration based on the process flow model, state blocks model, automatic event generation, and extended event-driven model are proposed one by one to support the implementation of rfid-GFDM. The nature of RFID technology is revealed, too. A use case about a computer numerical control (CNC) milling system is studied, and it demonstrates the feasibility of the proposed model. Finally, the possibility of popularizing the model to other field is discussed, too. It is expected to establish a normative RFID modeling method that will facilitate the convenience of RFID applications in a broad scope.

References

References
1.
Carlo
,
H. J.
,
Spicer
,
J. P.
, and
Rivera-Silva
,
A.
,
2012
, “
Simultaneous Consideration of Scalable-Reconfigurable Manufacturing System Investment and Operating Costs
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011003
.10.1115/1.4005305
2.
Ko
,
J.
, and
Hu
,
S. J.
,
2009
, “
Manufacturing System Design Considering Stochastic Product Evolution and Task Recurrence
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051012
.10.1115/1.4000095
3.
Wang
,
H.
,
Ko
,
J.
,
Zhu
,
X.
, and
Hu
,
S. J.
,
2010
, “
A Complexity Model for Assembly Supply Chains and Its Application to Configuration Design
,”
ASME J. Manuf. Sci. Eng.
,
132
(
2
), p.
021005
.10.1115/1.4001082
4.
Ali
,
A.
, and
Farson
,
D.
,
2002
, “
Statistical Classification of Spectral Data for Laser Weld Quality Monitoring
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
323
325
.10.1115/1.1455028
5.
Ligetti
,
C. B.
, and
Simpson
,
T. W.
,
2005
, “
Metamodel-Driven Design Optimization Using Integrative Graphical Design Interfaces: Results From a Job-Shop Manufacturing Simulation Experiment
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
1
), pp.
8
17
.10.1115/1.1794698
6.
Günther
,
O. P.
,
Kletti
,
W.
,
Kubach
,
U.
,
Ivantysynova
,
L.
, and
Ziekow
,
H.
,
2008
, “
RFID in Manufacturing: From Shop Floor to Top Floor
,”
RFID in Manufacturing
,
Springer
,
Berlin
.
7.
Domdouzis
,
K.
,
Kumar
,
B.
, and
Anumba
,
C.
,
2007
, “
Radio-Frequency Identification (RFID) Applications: A Brief Introduction
,”
Adv. Eng. Inf.
,
21
(
4
), pp.
350
355
.10.1016/j.aei.2006.09.001
8.
Stockman
,
H.
,
1948
, “
Communication by Means of Reflected Power
,”
Proc. IRE
,
36
(
10
), pp.
1196
1204
.10.1109/JRPROC.1948.226245
9.
Staff
,
U. J.
,
2010
, “
Joint Publication 1-02: Department of Defense Dictionary of Military and Associated Terms
,” Department of Defense, Washington, DC.
10.
Ko
,
C. H.
,
2010
, “
RFID 3D Location Sensing Algorithms
,”
Autom. Constr.
,
19
(
5
), pp.
588
595
.10.1016/j.autcon.2010.02.003
11.
Qiu
,
R. G.
,
2007
, “
RFID-Enabled Automation in Support of Factory Integration
,”
Rob. Comput.-Integr. Manufact.
,
23
(
6
), pp.
677
683
.10.1016/j.rcim.2007.02.002
12.
Yin
,
S.
,
Tserng
,
H. P.
,
Wang
,
J. C.
, and
Tsai
,
S. C.
,
2009
, “
Developing a Precast Production Management System Using RFID Technology
,”
Autom. Constr.
,
18
(
5
), pp.
677
691
.10.1016/j.autcon.2009.02.004
13.
Cao
,
H.
,
Folan
,
P.
,
Mascolo
,
J.
, and
Browne
,
J.
,
2009
, “
RFID in Product Lifecycle Management: A Case in the Automotive Industry
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
616
637
.10.1080/09511920701522981
14.
Mehrjerdi
,
Y. Z.
,
2008
, “
RFID-Enabled Systems: A Brief Review
,”
Assem. Autom.
,
28
(
3
), pp.
235
245
.10.1108/01445150810889493
15.
Pei
,
J. X.
, and
Klabjan
,
D.
,
2010
, “
Inventory Control in Serial Systems Under Radio Frequency Identification
,”
Int. J. Prod. Econ.
,
123
(
1
), pp.
118
136
.10.1016/j.ijpe.2009.07.011
16.
Angeles
,
R.
,
2005
, “
RFID Technologies: Supply-Chain Applications and Implementation Issues
,”
Inf. Sys. Manage.
,
22
(
1
), pp.
51
65
.10.1201/1078/44912.22.1.20051201/85739.7
17.
Wang
,
L. C.
,
2008
, “
Enhancing Construction Quality Inspection and Management Using RFID Technology
,”
Autom. Constr.
,
17
(
4
), pp.
467
479
.10.1016/j.autcon.2007.08.005
18.
Kiritsis
,
D.
,
Bufardi
,
A.
, and
Xirouchakis
,
P.
,
2003
, “
Research Issues on Product Lifecycle Management and Information Tracking Using Smart Embedded Systems
,”
Adv. Eng. Inf.
,
17
(
3–4
), pp.
189
202
.10.1016/j.aei.2004.09.005
19.
Brewer
,
A.
,
Sloan
,
N.
, and
Landers
,
T. L.
,
1999
, “
Intelligent Tracking in Manufacturing
,”
J. Intell. Manuf.
,
10
(
3
), pp.
245
250
.10.1023/A:1008995707211
20.
Kohn
,
W.
,
Brayman
, V
.
, and
Littleton
,
J.
,
2005
, “
Repair-Control of Enterprise System Using RFID Sensory Data
,”
IIE Trans.
,
37
(
4
), pp.
281
290
.10.1080/07408170590516953
21.
Huang
,
G. Q.
,
Zhang
,
Y. F.
, and
Jiang
,
P. Y.
,
2008
, “
RFID-Based Wireless Manufacturing for Real-Time Management of Job Shop WIP Inventories
,”
Int. J. Adv. Manuf. Technol
,
36
(
7
), pp.
752
764
.10.1007/s00170-006-0897-4
22.
Huang
,
G. Q.
,
Wright
,
P. K.
, and
Newman
,
S. T.
,
2009
, “
Wireless Manufacturing: A Literature Review, Recent Development, and Case Studies
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
579
594
.10.1080/09511920701724934
23.
Johnson
,
D.
,
2002
, “
RFID Tags Improve Tracking, Quality on Ford Line in Mexico
,”
Control Eng.
,
49
(
11
), p.
16
.
24.
Huang
,
G. Q.
,
Zhang
,
Y.
,
Chen
,
X.
, and
Newman
,
S. T.
,
2008
, “
RFID-Enabled Real-Time Wireless Manufacturing for Adaptive Assembly Planning and Control
,”
J. Intell. Manuf.
,
19
(
6
), pp.
701
713
.10.1007/s10845-008-0121-5
25.
Zhang
,
Y. F.
, and
Jiang
,
P. Y.
,
2008
, “
RFID-Based Smart Kanbans for Just-in-Time Manufacturing
,”
Int. J. Mater. Prod. Technol.
,
33
(
1
), pp.
170
184
.10.1504/IJMPT.2008.019780
26.
Brusey
,
J.
, and
McFarlane
,
D. C.
,
2009
, “
Effective RFID-Based Object Tracking for Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
638
647
.10.1080/09511920701805519
27.
Huang
,
H. P.
, and
Chang
,
Y. T.
,
2011
, “
Optimal Layout and Deployment for RFID Systems
,”
Adv. Eng. Inf.
,
25
(
1
), pp.
4
10
.10.1016/j.aei.2010.05.002
28.
Guo
,
Y.
, and
Qu
,
Z. H.
,
2004
, “
Coverage Control for a Mobile Robot Patrolling a Dynamic and Uncertain Environment
,”
Proceedings of the 5th World Congress on Intelligent Control and Automation
(
WCICA
), Vol. 6, pp.
4899
4903
.10.1109/WCICA.2004.1343643
29.
Bechteler
,
T. F.
, and
Yenigun
,
H.
,
2003
, “
2-D Localization and Identification Based on SAW ID-Tags at 2.5 GHz
,”
IEEE Trans. Microwave Theory Tech.
,
51
(
5
), pp.
1584
1590
.10.1109/TMTT.2003.810142
30.
Zhou
,
J. Y.
, and
Shi
,
J.
,
2009
, “
Localisation of Stationary Object Using Passive RFID Technology
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
717
726
.10.1080/09511920802209074
31.
Zhang
,
Y. M.
,
Amin
,
M. G.
, and
Kaushik
,
S.
,
2007
, “
Localization and Tracking of Passive RFID Tags Based on Direction Estimation
,”
Int. J. Antennas Propag.
,
2007
, p.
17426
.10.1155/2007/17426
32.
Franceschini
,
F.
,
Galetto
,
M.
,
Maisano
,
D.
, and
Mastrogiacomo
,
L.
,
2009
, “
A Review of Localization Algorithms for Distributed Wireless Sensor Networks in Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
22
(
7
), pp.
698
716
.10.1080/09511920601182217
33.
Jiang
,
P. Y.
,
Fu
,
Y. B.
,
Zhu
,
Q. Q.
, and
Zheng
,
M.
,
2011
, “
Event-Driven Graphical Representative Schema for Job-Shop-Type Material Flows and Data Computing Using Automatic Identification of Radio Frequency Identification Tags
,”
Proc. Inst. Mech. Eng., Part B
,
226
(
2
), pp.
339
352
.10.1177/0954405411409827
You do not currently have access to this content.