With a broader intention of producing thin sheet embossing molds, orthogonal cutting experiments of thin workpieces are conducted. Challenges in machining thin workpieces are many: machining induced stress and deformation, fixturing challenges, and substrate effects. A setup involving continuous orthogonal cutting with a single crystal diamond toolof an aluminum alloy (Al6061-T6) workpiece fixtured using an adhesive to reduce its thickness is used to study trends in forces, chip thickness, and to understand to what level of thickness we can machine the workpiece down to and in what form the adhesive fails. There are no significant changes observed in the forces and chip thickness between thick and thin workpieces during the experiments, meaning that the cutting energy required is the same in cutting thick or thin workpieces. The limitation to achieve thinner workpiece is attributed mainly due to the detachment of the thin workpiece by peel-off induced by adhesive failure mode, which occurs during initial chip formation as the tool initially engages with the workpiece. We use a finite element model to understand the stresses in the workpiece during this initial tool engagement when it is thick and when it is thin, as well as the effect of the adhesive itself and the effect of adhesive thickness. Simulation results show that the tensile stress induced by the tool at the workpiece-adhesive interface is higher for a thinner workpiece (45 μm) than a thicker workpiece (150 μm) and higher at the entrance. As such, a thinner workpiece is more susceptible to peel-off. The peeling of thin workpiece is induced when the high tensile stress at the interface exceeds the tensile-at-break value of the adhesive.

References

References
1.
Ng
,
S.
, and
Wang
,
Z.
,
2008
, “
Hot Roller Embossing for Microfluidics: Process and Challenges
,”
Microsyst. Technol.
,
15
(
8
), pp.
1149
1156
.10.1007/s00542-008-0722-0
2.
Ishizawa
,
N.
,
Idei
,
K.
,
Kimura
,
T.
,
Noda
,
D.
, and
Hattori
,
T.
,
2008
, “
Resin Micromachining by Roller Hot Embossing
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1381
1388
.10.1007/s00542-007-0552-5
3.
Friedrich
,
C.
, and
Kikkeri
,
B.
,
1995
, “
Rapid Fabrication of Molds by Mechanical Micromilling: Process Development
,”
Proc. SPIE
,
2640
, pp.
161
171
.10.1117/12.222643
4.
Hupert
,
M. L.
,
Guy
,
W. J.
,
Llopis
,
S. D.
,
Shadpour
,
H.
,
Rani
,
S.
,
Nikitopoulos
,
D. E.
, and
Soper
,
S. A.
,
2007
, “
Evaluation of Micromilled Metal Mold Masters for the Replication of Microchip Electrophoresis Devices
,”
Microfluid. Nanofluid.
,
3
(
1
), pp.
1
11
.10.1007/s10404-006-0091-x
5.
Hyuk-Jin
,
K.
, and
Sung-Hoon
,
A.
,
2007
, “
Fabrication and Characterization of Microparts by Mechanical Micromachining: Precision and Cost Estimation
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
B2
), pp.
231
240
.10.1243/09544054JEM609
6.
Hupert
,
M. L.
,
Guy
,
W. J.
,
Llopis
,
S. D.
,
Situma
,
C.
,
Rani
,
S.
,
Nikitopoulos
,
D. E.
, and
Soper
,
S. A.
,
2006
, “
High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters
,”
Proceedings of the Microfluidics, BioMEMS, and Medical Microsystems IV
, San Jose, CA,
SPIE
, p. 61120B.10.1117/12.647135
7.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.10.1115/1.1813469
8.
Wang
,
B.
,
Liag
,
Y. C.
,
Zhao
,
Y.
, and
Dong
,
S.
,
2006
, “
Measurement of the Residual Stress in the Micro Milled Thin-Walled Structures
,”
J. Phys.: Conf. Ser.
,
48
(
1
), pp.
1127
1130
.10.1088/1742-6596/48/1/209
9.
Bourne
,
K. A.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2011
, “
Study of the Mechanics of the Micro-Groove Cutting Process
,” Proceedings of the
ASME
2011 International Manufacturing Science and Engineering Conference, Paper No. MSEC2011-50076
.10.1115/MSEC2011-50076
10.
Jahanmir
,
S.
, and
Suh
,
N. P.
,
1977
, “
Surface Topography and Integrity Effects on Sliding Wear
,”
Wear
,
44
(
1
), pp.
87
99
.10.1016/0043-1648(77)90087-4
11.
Campbell
,
C. E.
,
Bendersky
,
L. A.
,
Boettinger
,
W. J.
, and
Ivester
,
R.
,
2006
, “
Microstructural Characterization of Al-7075-T651 Chips and Work Pieces Produced by High-Speed Machining
,”
Mater. Sci. Eng. A
,
430
(
1–2
), pp.
15
26
.10.1016/j.msea.2006.04.122
12.
Schmutz
,
J.
,
Brinksmeier
,
E.
, and
Bischoff
,
E.
,
2001
, “
Sub-Surface Deformation in Vibration Cutting of Copper
,”
Precis. Eng.
,
25
(
3
), pp.
218
223
.10.1016/S0141-6359(01)00073-3
13.
To
,
S.
,
Lee
,
W. B.
, and
Cheung
,
C. F.
,
2003
, “
Orientation Changes of Aluminium Single Crystals in Ultra-Precision Diamond Turning
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
346
351
.10.1016/S0924-0136(03)00756-8
14.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Orthogonal Machining of Single-Crystal and Coarse-Grained Aluminum
,”
J. Manuf. Process.
,
14
(
2
), pp.
126
134
.10.1016/j.jmapro.2012.01.002
15.
Saptaji
,
K.
, and
Subbiah
,
S.
,
2010
, “
Microstructural Changes During Precision Machining of Thin Substrates
,”
Key Eng. Mater.
,
447–448
, pp.
76
80
.10.4028/www.scientific.net/KEM.447-448.76
16.
Huang
,
Y.
, and
Hoshi
,
T.
,
2000
, “
Optimization of Fixture Design With Consideration of Thermal Deformation in Face Milling
,”
J. Manuf. Syst.
,
19
(
5
), pp.
332
340
.10.1016/S0278-6125(01)89005-1
17.
Ramesh
,
K.
,
Huang
,
H.
,
Yin
,
L.
, and
Yui
,
A.
,
2004
, “
Surface Waviness Controlled Grinding of Thin Mold Inserts Using Chilled Air as Coolant
,”
Mater. Manuf. Process.
,
19
(
2
), pp.
341
354
.10.1081/AMP-120029959
18.
Mori
,
T.
,
Hiramatsu
,
T.
, and
Shamoto
,
E.
,
2011
, “
Simultaneous Double-Sided Milling of Flexible Plates With High Accuracy and High Efficiency—Suppression of Forced Chatter Vibration With Synchronized Single-Tooth Cutters
,”
Precis. Eng.
,
35
(
3
), pp.
416
423
.10.1016/j.precisioneng.2011.02.002
19.
Une
,
A.
,
Yoshitomi
,
K.
, and
Mochida
,
M.
,
2004
, “
Design of a New Porous Pin Chuck With Super High Flatness
,”
Proceedings of the 29th International Conference on
Micro and Nano Engineering
, Netherlands, pp.
933
940
.10.1016/j.mee.2004.03.078
20.
Bifano
,
T. G.
, and
Hosler
,
J. B.
,
1993
, “
Precision Grinding of Ultra-Thin Quartz Wafers
,”
ASME J. Eng. Industry
,
115
(
3
), pp.
258
262
.10.1115/1.2901658
21.
Aoyama
,
T.
, and
Kakinuma
,
Y.
,
2005
, “
Development of Fixture Devices for Thin and Compliant Workpieces
,”
CIRP Ann.
,
54
(
1
), pp.
325
328
.10.1016/S0007-8506(07)60114-0
22.
Kakinuma
,
Y.
,
Aoyama
,
T.
, and
Anzai
,
H.
,
2007
, “
Application of the Electro-Rheological Gel to Fixture Devices for Micro Milling Processes
,”
J. Adv. Mech. Des., Syst., Manuf.
,
1
(
3
), pp.
387
398
.10.1299/jamdsm.1.387
23.
Tani
,
Y.
,
Ohshima
,
T.
, and
Sato
,
H.
,
1992
, “
Application of Sintered Plastics to a Porous Vacuum Chuck for Diamond Turning of Aluminium Magnetic Discs
,”
CIRP Ann.
,
41
(
1
), pp.
133
136
.10.1016/S0007-8506(07)61169-X
24.
De Meter
,
E. C.
,
2005
, “
Characterization of the Quasi-Static Deformation of LAAG Joints Adhering Machined Steel Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
350
357
.10.1115/1.1807851
25.
De Meter
,
E. C.
, and
Santhosh Kumar
,
J.
,
2010
, “
Assessment of Photo-Activated Adhesive Workholding (PAW) Technology for Holding ‘Hard-to-Hold’ Workpieces for Machining
,”
J. Manuf. Syst.
,
29
(
1
), pp.
19
28
.10.1016/j.jmsy.2010.06.006
26.
Petrie
,
E. M.
,
2000
,
Handbook of Adhesives and Sealants
,
McGraw-Hill
,
New York
.
27.
Xu
,
Z.-H.
, and
Rowcliffe
,
D.
,
2004
, “
Finite Element Analysis of Substrate Effects on Indentation Behaviour of Thin Films
,”
Thin Solid Films
,
447–448
, pp.
399
405
.10.1016/S0040-6090(03)01071-X
28.
Clifford
,
C. A.
, and
Seah
,
M. P.
,
2006
, “
Modelling of Nanomechanical Nanoindentation Measurements Using an AFM or Nanoindenter for Compliant Layers on Stiffer Substrates
,”
Nanotechnology
,
17
(
21
), pp.
5283
–5292.10.1088/0957-4484/17/21/001
29.
Ohmura
,
T.
,
Matsuoka
,
S.
,
Tanaka
,
K.
, and
Yoshida
,
T.
,
2001
, “
Nanoindentation Load-Displacement Behavior of Pure Face Centered Cubic Metal Thin Films on a Hard Substrate
,”
Thin Solid Films
,
385
(
1–2
), pp.
198
204
.10.1016/S0040-6090(00)01907-6
30.
Sutter
,
G.
,
Molinari
,
A.
,
List
,
G.
, and
Bi
,
X.
,
2012
, “
Chip Flow and Scaling Laws in High Speed Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
134
(
2
), p.
021005
.10.1115/1.4005793
31.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Oxford University Press
,
Oxford, UK
.
32.
Duke
,
A. J.
, and
Stanbridge
,
R. P.
,
1968
, “
Cleavage Behavior of Bonds Made With Adherends Capable of Plastic Yield
,”
J. Appl. Polym. Sci.
,
12
(
7
), pp.
1487
1503
.10.1002/app.1968.070120701
33.
Crocombe
,
A. D.
, and
Adams
,
R. D.
,
1982
, “
Elasto-Plastic Investigation of the Peel Test
,”
J. Adhes.
,
13
, pp.
241
267
.10.1080/00218468208073190
34.
Thouless
,
M. D.
, and
Yang
,
Q. D.
,
2008
, “
A Parametric Study of the Peel Test
,”
Int. J. Adhes. Adhes.
,
28
(
4–5
), pp.
176
184
.10.1016/j.ijadhadh.2007.06.006
35.
Williams
,
J. G.
,
1998
, “
Friction and Plasticity Effects in Wedge Splitting and Cutting Fracture Tests
,”
J. Mater. Sci.
,
33
(
22
), pp.
5351
5357
.10.1023/A:1004490015211
36.
Sun
,
C.
,
Thouless
,
M. D.
,
Waas
,
A. M.
,
Schroeder
,
J. A.
, and
Zavattieri
,
P. D.
,
2008
, “
Ductile-Brittle Transitions in the Fracture of Plastically Deforming, Adhesively Bonded Structures. Part II: Numerical Studies
,”
Int. J. Solids Struct.
,
45
(
17
), pp.
4725
4738
.10.1016/j.ijsolstr.2008.04.007
37.
Rodrigo
,
A.
,
Perillo
,
P.
, and
Ichimura
,
H.
,
2000
, “
On the Correlation of Substrate Microhardness With the Critical Load of Scratch Adherence for Hard Coatings
,”
Surf. Coat. Technol.
,
124
(
2–3
), pp.
87
92
.10.1016/S0257-8972(99)00640-4
38.
Dassault Systèmes
,
2009
,
Abaqus 6.9 Documentation, Providence, RI
.
39.
Shi
,
J.
, and
Liu
,
C. R.
,
2004
, “
The Influence of Material Models on Finite Element Simulation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
849
857
.10.1115/1.1813473
40.
Zorev
,
N. N.
,
1963
, “
Interrelationship Between Shear Processes Occuring Along Tool Face and on Shear Plane in Metal Cutting
,”
Proceedings of the International Research in Production Engineering Conference
, ASME, New York, pp.
42
49
.
41.
Tabor
,
D.
,
1951
,
The Hardness of Metals
,
Clarendon Press
,
Gloucestershire, UK
.
42.
Gupta
,
N. K.
,
Iqbal
,
M. A.
, and
Sekhon
,
G. S.
,
2006
, “
Experimental and Numerical Studies on the Behavior of Thin Aluminum Plates Subjected to Impact by Blunt- and Hemispherical-Nosed Projectiles
,”
Int. J. Impact Eng.
,
32
(
12
), pp.
1921
1944
.10.1016/j.ijimpeng.2005.06.007
43.
Lesuer
,
D. R.
,
Kay
,
G. J.
, and
Leblanc
,
M. M.
,
2001
, “
Modeling Large Strain, High Rate Deformation in Metals
,”
Modelling the Performance of Engineering Structural Materials II. Proceedings of a Symposium
,
D. R.
Lesuer
and
T. S.
Srivatsan
, eds., TMS, Warrendale, PA, pp.
75
86
.
44.
MatWeb
,
2013
, “
MatWeb: Material Property Data
,” http://www.matweb.com
45.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
, The Hague, Netherlands, pp.
541
547
.
46.
Rosa
,
P. A. R.
,
Kolednik
,
O.
,
Martins
,
P. A. F.
, and
Atkins
,
A. G.
,
2007
, “
The Transient Beginning to Machining and the Transition to Steady-State Cutting
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
1904
1915
.10.1016/j.ijmachtools.2007.03.005
You do not currently have access to this content.