This paper focuses on the grid cathode design in electrochemical machining (ECM) in order to develop a new cathode design method for realizing a breakthrough: one cathode can produce different workpieces with different profiles. Three types of square cells, 2.5 mm × 2.5 mm, 3 mm × 3 mm, and 4 mm × 4 mm in size and three types of circular cells, with diameters of 1.5, 2.0, and 2.5 mm are utilized to construct the plane, slant, and blade grid cathode. The material of the cathode and anode is CrNi18Ti9 and the ingredients of the electrolyte are 15% NaCl and 15% NaNO3. A large number of experiments are conducted by using different grid cathodes to analyze the effects of the shape and size of the grid cell on the machining process. In addition, we compare the workpiece quality and machining error between using the grid cathode and the unitary cathode and discuss the reasons for the errors in order to obtain a better surface quality of the workpiece. Our research supports the conclusions that the grid cathode can be used to manufacture workpieces with complex shapes, the workpiece quality is better if the square cell is smaller and, for the same equivalent area, the circular grid cathode produces a better quality workpiece than the square grid cathode.

References

References
1.
Zhu
,
D.
,
Wang
,
K.
, and
Yang
,
J. M.
,
2003
, “
Design of Electrode Profile in Electrochemical Manufacturing Process
,”
CIRP Ann.
,
52
, pp.
169
172
.10.1016/S0007-8506(07)60557-5
2.
Rajurkar
,
K. P.
,
Zhu
,
D.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
de Silva
,
A.
,
1999
, “
New Developments in Electro-Chemical Machining
,”
CIRP Ann.
,
48
, pp.
567
579
.10.1016/S0007-8506(07)63235-1
3.
Hua
,
J.
, and
Li
,
Z. Y.
,
2009
, “
Cathode Design of Aero-Engine Blades in Electrochemical Machining Based on Characteristics of Gap Distribution
,”
Adv. Mater. Res.
,
69–70
, pp.
248
252
.10.4028/www.scientific.net/AMR.69-70.248
4.
Park
,
M. S.
, and
Chu
,
C. N.
,
2007
Micro-Electrochemical Machining Using Multiple Tool Electrodes
,”
J. Micromech. Microeng.
,
17
, pp.
1451
1457
.10.1088/0960-1317/17/8/006
5.
Bhattacharyya
,
B.
,
Malapati
,
M.
, and
Munda
,
J.
,
2007
, “
Influence of Tool Vibration on Machining Performance in Electrochemical Micro-Machining of Copper
,”
Int. J. Machine Tools Manuf.
,
47
, pp.
335
342
.10.1016/j.ijmachtools.2006.03.005
6.
Rahman
,
M.
,
Lim
,
H. S.
, and
Neo
,
K. S.
,
2007
, “
Tool-Based Nanofinishing and Micromachining
,”
J. Mater. Process. Technol.
,
185
, pp.
2
16
.10.1016/j.jmatprotec.2006.03.121
7.
McClennan
,
J.
,
Alder
,
G.
, and
Clifton
,
D.
,
2006
, “
Two-Dimensional Tool Design for Two-Dimensional Equilibrium Electrochemical Machining Die-Sinking Using a Numerical Method
,”
J. Eng. Manuf
,
220
, pp.
637
645
.10.1243/09544054JEM330
8.
Chang
,
C. S.
,
Hourng
,
L. W.
, and
Chung
,
C. T.
,
1999
Tool Design in Electrochemical Machining Considering the Effect of Thermal-Fluid Properties
,”
J. Appl. Electrochem.
,
29
, pp.
321
330
.10.1023/A:1003425016532
9.
Westley
,
J. A.
,
Atkinson
,
J.
, and
Duffield
,
A.
,
2004
, “
Generic Aspects of Tool Design for Electrochemical Machining
,”
J. Mater. Process. Technol.
,
149
, pp.
384
392
.10.1016/j.jmatprotec.2004.02.046
10.
Mount
,
A. R.
,
Howarth
,
P. S.
, and
Clifton
,
D.
,
2001
, “
The Use of a Segmented Tool for the Analysis of Electrochemical Machining
,”
J. Appl. Electrochem.
,
31
, pp.
1213
1220
.10.1023/A:1012740704713
11.
Zhu
,
D.
, and
Xu
,
H. Y.
,
2002
, “
Improvement of Electrochemical Machining Accuracy by Using Dual Pole Tool
,”
J. Mater. Process. Technol.
,
129
, pp.
15
18
.10.1016/S0924-0136(02)00567-8
12.
Tsuboi
,
R.
, and
Yamamoto
,
M.
,
2009
, “
Modeling and Applications of Electrochemical Machining Process
,”
ASME Conf. Proc.
, Vol.
4
, pp.
377
384
.10.1115/IMECE2009-12552
13.
Fujisawa
,
T.
,
Inaba
,
K.
,
Yamamoto
,
M.
, and
Kato
,
D.
,
2008
, “
Multiphysics Simulation of Electrochemical Machining Process for Three-Dimensional Compressor Blade
,”
ASME J. Fluids Eng.
,
130
(8)
, p.
081602
.10.1115/1.2956596
14.
Lu
,
Y. H.
,
Liu
,
K.
, and
Zhao
,
D. B.
,
2011
, “
Experimental Investigation on Monitoring Interelectrode Gap of ECM With Six-Axis Force Sensor
,”
Int. J. Adv. Manuf. Technol.
,
55
, pp.
565
572
.10.1007/s00170-010-3105-5
You do not currently have access to this content.