One of the major challenges in spot welding of ultra-thin gage steel (e.g., <0.6 mm) is the short cap life. Because of the elevated temperature developed at the electrode/sheet interface, the electrodes often require dressing or replacement within a fraction of the time when welding more traditional automotive gage steel (>0.75 mm). In this study, the method of inserting flexible strips between the electrode and workpiece in resistance spot welding of 0.4 mm thick galvanized SAE1004 steel sheet has been adopted in order to reduce electrode tip temperature and improve weld quality. The effect of the inserted strips on the Joule heat generation and temperature distribution has been analyzed analytically. Then, because of the difficulties in measuring the experimental electrode tip temperature, a finite element model has been employed to estimate temperature distributions within the weld zone. The effects of the process variables (i.e., strip material and thickness) on the cap temperature and weld quality were modeled. Experiments were also conducted to validate the modeling results. Test data and modeling results showed that the presence of the strip significantly facilitated weld initiation and growth and decreased the rate of electrode degradation. Of the materials investigated, the desirable strip for resistance spot welding 0.4 mm thick galvanized SAE1004 steel was determined to be 0.12 mm thick Cu55Ni45 alloy.

References

References
1.
Peças
,
P.
,
Henrique
,
M.
,
Miranda
,
R. M.
, and
Quintino
,
L.
,
1995
, “
Laser Welding of Low-Thickness Zinc-Coated and Uncoated Carbon Steel Sheets
,”
Opt. Quantum Electron.
,
27
, pp.
1193
1201
.10.1007/BF00326475
2.
Irving
,
B.
,
1996
, “
The Search Goes on for the Perfect Resistance Welding Control
,”
Weld. J.
,
75
(
1
), pp.
63
68
.
3.
Li
,
W.
,
Cheng
,
S.
,
Hu
,
S. J.
, and
Shriver
,
J.
,
2001
, “
Statistical Investigation on Resistance Spot Welding Quality Using a Two-Stage, Sliding-Level Experiment
,”
ASME J. Manuf. Sci. Eng.
,
123
(3)
, pp.
513
520
.10.1115/1.1382595
4.
Williams
,
N. T.
, and
Parker
,
J. D.
,
2004
, “
Review of Resistance Spot Welding of Steel Sheets Part 2 Factors Influencing Electrode Life
,”
Int. Mater. Rev.
,
49
(
2
), pp.
77
108
.10.1179/095066004225010541
5.
Parker
,
J. D.
, and
Williams
,
N. T.
,
1998
, “
Mechanisms of Electrode Degradation When Spot Welding Coated Steels
,”
Sci. Technol. Weld. Join.
,
3
(
2
), pp.
65
74
.10.1179/136217198791153204
6.
Holliday
,
R. J.
,
Parker
,
J. D.
, and
Williams
,
N. T.
,
1995
, “
Electrode Deformation When Spot Welding Coated Steels
,”
Weld. World
,
35
(
3
), pp.
160
164
.10.1016/0043-2288(94)00083-U
7.
Freytag
,
N. A.
,
1965
, “
A Comprehensive Study of Spot Welding Galvanized Steel
,”
Weld. J.
,
44
(
4
), pp.
145s
156s
.
8.
Holliday
,
R. J.
,
Parker
,
J. D.
, and
Williams
,
N. T.
,
1996
, “
Relative Contribution of Electrode Tip Growth Mechanisms in Spot Welding Zinc Coated Steels
,”
Weld. World
,
37
(
4
), pp.
186
193
.
9.
Chen
,
Z.
, and
Zhou
,
Y.
,
2006
, “
Surface Modification of Resistance Welding Electrode by Electro-Spark Deposited Composite Coatings: Part I—Coating Characterization
,”
Surf. Coat. Technol.
,
201
, pp.
1503
1510
.10.1016/j.surfcoat.2006.02.015
10.
Dong
,
S. J.
,
2003
, “
Effects of TiC Composite Coating on Electrode Degradation in Micro Resistance Welding of Nickel-Plated Steel
,”
Metall. Mater. Trans. A
,
34
(
7
), pp.
1501
1511
.10.1007/s11661-003-0262-2
11.
Lai
,
X. M.
,
Luo
,
A. H.
,
Zhang
,
Y. S.
, and
Chen
,
G. L.
,
2009
, “
Optimal Design of Electrode Cooling System for Resistance Spot Welding With the Response Surface Method
,”
Int. J. Adv. Manuf. Technol.
,
41
, pp.
226
233
.10.1007/s00170-008-1478-5
12.
Qiu
,
R. F.
,
Satonaka
,
S.
, and
Iwamoto
,
C.
,
2009
, “
In Situ Scanning Electron Microscopy Observation of Fracture Crack Propagation in the Welding Interface Between Aluminum Alloy and Steel
,”
Mater. Sci. Technol.
,
25
(
10
), pp.
1189
1192
.10.1179/174328408X374649
13.
Chang
,
B. H.
, and
Li
,
M. V.
,
2001
, “
Comparative Study of Small Scale and Large Scale Resistance Spot Welding
,”
Sci. Technol. Weld. Join.
,
6
(
5
), pp.
273
280
.10.1179/136217101101538875
14.
Chuko
,
W.
, and
Gould
,
J. E.
,
2002
, “
Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels
,”
Weld. J.
,
81
(
1
), pp.
1s
8s
.
15.
Gould
,
J. E.
,
Khurana
,
S. P.
, and
Li
,
T.
,
2006
, “
Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels
,”
Weld. J.
,
85
(
5
), pp.
111s
116s
.
16.
Davis
,
J. R.
, ed.,
1998
,
Metals Handbook
, Desk ed., ASM International, Materials Park, OH, pp.
55
65
.
17.
Li
,
W.
,
2005
, “
Modeling and On-Line Estimation of Electrode Wear in Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
709
717
.10.1115/1.2034516
18.
Li
,
W.
,
Cerjanec
,
D.
, and
Grzadzinski
,
G. A.
,
2005
, “
A Comparative Study of Single-Phase AC and Multiphase DC Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
583
589
.10.1115/1.1949621
19.
Chang
,
B. H.
,
Du
,
D.
,
Sui
,
B.
,
Zhou
,
Y.
,
Wang
,
Z.
, and
Heidarzadeh
,
F.
,
2007
, “
Effect of Forging Force on Fatigue Behavior of Spot Welded Joints of Aluminum Alloy 5182
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
95
100
.10.1115/1.2383071
20.
Shen
,
J.
,
Zhang
,
Y. S.
,
Lai
,
X. M.
, and
Wang
,
P. C.
,
2010
, “
Modeling of Resistance Spot Welding of Multiple Stacks of Steel Sheets
,”
Mater. Des.
,
32
, pp.
550
560
.10.1016/j.matdes.2010.08.023
21.
Harlin
,
N.
,
Jones
,
T. B.
, and
Parker
,
J. D.
,
2003
, “
Weld Growth Mechanism of Resistance Spot Welds in Zinc Coated Steel
,”
J. Mater. Process. Technol.
,
143–144
, pp.
448
453
.10.1016/S0924-0136(03)00447-3
22.
Gupta
,
O. P.
, and
De
,
A.
,
1998
, “
An Improved Numerical Modeling for Resistance Spot Welding Process and Its Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
246
251
.10.1115/1.2830120
23.
Nied
,
H. A.
,
1984
, “
The Finite Element Modeling of the Resistance Spot Welding Process
,”
Weld. J.
,
63
(
4
), pp.
123s
132s
.
24.
25.
Hou
,
Z. G.
,
Kim
,
I.-S.
,
Wang
,
Y. X.
,
Li
,
C. Z.
, and
Chen
,
C. Y.
,
2007
, “
Finite Element Analysis for the Mechanical Features of Resistance Spot Welding Process
,”
J. Mater. Proc. Technol.
,
185
, pp.
160
165
.10.1016/j.jmatprotec.2006.03.143
26.
Wang
,
M.
,
Zhang
,
H. T.
,
Pan
,
H.
, and
Lei
,
M.
,
2009
,
Numerical Simulation of Nugget Formation in Resistance Spot Welding of DP590 Dual-Phase Steel
,
Shanghai Jiao Tong University Press
, Vol.
43
, pp.
56
60
.
27.
Rogeona
,
P.
,
Carrea
,
P.
,
Costaa
,
J.
,
Sibilia
,
G.
, and
Saindrenanb
,
G.
,
2008
, “
Characterization of Electrical Contact Conditions in Spot Welding Assemblies
,”
J. Mater. Proc. Technol.
,
195
, pp.
117
124
.10.1016/j.jmatprotec.2007.04.127
28.
Babu
,
S. S.
,
Santella
,
M. L.
,
Feng
,
Z.
,
Riemer
,
B. W.
, and
Cohron
,
J. W.
,
2001
, “
Empirical Model of Effects of Pressure and Temperature on Electrical Contact Resistance of Metals
,”
Sci. Technol. Weld. Join.
,
6
(
3
), pp.
126
132
.10.1179/136217101101538631
29.
Song
,
Q. F.
,
Zhang
,
W. Q.
, and
Niels
,
B.
,
2005
, “
An Experimental Study Determines the Electrical Contact Resistance in Resistance Welding
,”
Weld. J.
,
84
(
5
), pp.
73s
76s
.
30.
American Welding Society
,
1997
, “
Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials
,” Report No. ANSI/AWS/SAE/D8.9-97.
31.
Aslanlar
,
S.
,
2006
, “
The Effect of Nucleus Size on Mechanical Properties in Electrical Resistance Spot Welding of Sheets Used in Automotive Industry
,”
Mater. Des.
,
27
, pp.
125
131
.10.1016/j.matdes.2004.09.025
You do not currently have access to this content.