Understanding and modeling of the human welder's response to three-dimensional (3D) weld pool surface may help develop next generation intelligent welding machines and train welders faster. In this paper, human welder's adjustment on the welding current as a response to the 3D weld pool surface characterized by its width, length, and convexity is studied. An innovative vision system is used to real-time measure the specular 3D weld pool surface under strong arc in gas tungsten arc welding (GTAW). Experiments are designed to produce random changes in the welding speed resulting in fluctuations in the weld pool surface. Adaptive neuro-fuzzy inference system (ANFIS) is proposed to correlate the human welder's response to the 3D weld pool surface using three inputs including the weld pool width, length and convexity. The human welder's behavior is not only related to the 3D weld pool geometry but also relies on the welder's previous adjustment. In this sense, a four input ANFIS model adding the previous human welder's response as a model input is developed and compared with the fitted linear model. It is found that the proposed ANFIS model can derive a more accurate correlation between the human welder's responses and the weld pool geometry and help understand the nonlinear response of the human welder to 3D weld pool surfaces.

References

References
1.
Uttrachi
,
G. D.
,
2007
, “
Welder Shortage Requires New Thinking
,”
Weld. J.
,
86
(
1
), p.
6
.
2.
Richardson
,
R. W.
, and
Edwards
,
F. S.
,
1995
, “
Controlling GT Arc Length From Arc Light Emissions
,”
Trends in Welding Research, Proceedings of the 4th International Conference
,
Gatlinburg, TN
.
3.
Li
,
P. J.
, and
Zhang
,
Y. M.
,
2001
, “
Precision Sensing of Arc Length in GTAW Based on Arc Light Spectrum
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
62
65
.10.1115/1.1349719
4.
Ma
,
H. B.
, and
Wei
,
S. C.
,
2010
, “
Binocular Vision System for Both Weld Pool and Root Gap in Robot Welding Process
,”
Sens. Rev.
,
30
(
2
), pp.
116
123
.10.1108/02602281011022706
5.
Fan
,
C. J.
,
Lv
,
F.
, and
Chen
,
S.
,
2009
, “
Visual Sensing and Penetration Control in Aluminum Alloy Pulsed GTA Welding
,”
Int. J. Adv. Manuf. Technol.
,
42
(
1–2
), pp.
126
137
.10.1007/s00170-008-1587-1
6.
Hartman
,
D. A.
,
DeLapp
,
D. R.
,
Barnett
,
R. J.
, and
Cook
,
G. E.
,
1998
, “
A Neural Network/Fuzzy Logic System for Weld Penetration Control
,”
Trends in Welding Research, Proceedings of the 5th International Conference
,
Pine Mountain, GA
.
7.
Balfour
,
C.
,
Smith
,
J. S.
, and
Al-Shamma'a
,
A. I.
,
2006
, “
A Novel Edge Feature Correlation Algorithm for Real-Time Computer Vision-Based Molten Weld Pool Measurements
,”
Weld. J.
,
85
(
1
), pp.
1
8
.
8.
Song
,
H. S.
, and
Zhang
,
Y. M.
,
2009
, “
Error Analysis of a Three-Dimensional GTA Weld Pool Surface Measurement System
,”
Weld. J.
,
88
(
7
), pp.
141
148
.
9.
Lin
,
M. L.
, and
Eagar
,
T. W.
,
1985
, “
Influence of Arc Pressure on Weld Pool Geometry
,”
Weld. J.
,
64
(
6
), pp.
163
169
.
10.
Rokhlin
,
S. I.
, and
Guu
,
A. C.
,
1993
, “
A Study of Arc Force, Pool Depression, and Weld Penetration During Gas Tungsten Arc Welding
,”
Weld. J.
,
72
(
8
), pp.
381
390
.
11.
Zhang
,
Y. M.
,
Li
,
L.
, and
Kovacevic
,
R.
,
1997
, “
Dynamic Estimation of Full Penetration Using Geometry of Adjacent Weld Pools
,”
ASME J. Manuf. Sci. Eng.
,
19
(
4A
), pp.
631
643
.10.1115/1.2831197
12.
Kovacevic
,
R.
, and
Zhang
,
Y. M.
,
1996
, “
Sensing Free Surface of Arc Weld Pool Using Specular Reflection: Principle and Analysis
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
210
(
6
), pp.
553
564
.10.1243/PIME_PROC_1996_210_154_02
13.
Zhang
,
W. J.
,
Liu
,
Y. K.
,
Wang
,
X.
, and
Zhang
,
Y. M.
,
2012
, “
Characterization of Three-Dimensional Weld Pool Surface in GTAW
,”
Weld. J.
,
91
, pp.
195s
203s
.
14.
Haykin
,
S.
,
1994
,
Neural Networks: A Comprehensive Foundation
,
Macmillan College Publishing Company, Inc.
,
New York
.
15.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Application to Modeling and Control
,”
IEEE Trans. Syst., Man, Cybern.
,
15
(
1
), pp.
116
132
.10.1109/TSMC.1985.6313399
16.
Mamdani
,
E. H.
, and
Assilian
,
S.
,
1975
, “
An Experiment in Linguistic Synthesis With a Fuzzy Logic Controller
,”
Int. J. Man-Mach. Stud.
,
7
(
1
), pp.
1
13
.10.1016/S0020-7373(75)80002-2
17.
Hayashi
,
K.
,
Shimizu
,
Y.
,
Dote
,
Y.
,
Takayama
,
A
., and
Hirako
,
A.
,
1995
, “
Neuro Fuzzy Transmission Control for Automobile With Variable Loads
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
), pp.
49
53
.10.1109/87.370709
18.
Tanaka
,
K.
,
Sano
,
M.
, and
Watanabe
,
H.
,
1995
, “
Modeling and Control of Carbon Monoxide Concentration Using a Neuro-Fuzzy Technique
,”
IEEE Trans. Fuzzy Syst.
,
3
(
3
), pp.
271
279
.10.1109/91.413233
19.
Kovacevic
,
R.
, and
Zhang
,
Y. M.
,
1997
, “
Neurofuzzy Model-Based Weld Fusion State Estimation
,”
IEEE Control Syst. Mag.
,
17
(
2
), pp.
30
42
.10.1109/37.581293
20.
Zhang
,
Y. M.
, and
Kovacevic
,
R.
,
1998
, “
Neurofuzzy Model Based Control of Weld Fusion Zone Geometry
,”
IEEE Trans. Fuzzy Syst.
,
6
(
3
), pp.
389
401
.10.1109/91.705507
21.
Jang
,
J. S. R.
, and
Sun
,
C. T.
,
1995
, “
Neuro-Fuzzy Modeling and Control
,”
Proc. IEEE
,
83
(
3
), pp.
378
406
.10.1109/5.364486
22.
Jang
,
J. S. R.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst., Man, Cybern.
,
23
(
3
), pp.
665
685
.10.1109/21.256541
23.
Lih
,
W.-C.
,
Bukkapatnam
,
S. T. S.
,
Rao
,
P.
,
Chandrasekharan
,
N.
, and
Komanduri
,
R.
,
2008
, “
Adaptive Neuro-Fuzzy Inference System Modeling of MRR and WIWNU in CMP Process With Sparse Experimental Data
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
1
), pp.
71
83
.10.1109/TASE.2007.911683
24.
Zhai
,
J.
,
Zhou
,
J.
,
Zhang
,
L.
,
Zhao
,
J.
, and
Hong
,
W.
,
2009
, “
The Dynamic Behavioral Model of RF Power Amplifiers With the Modified ANFIS
,”
IEEE Trans. Microwave Theory Tech.
,
57
(
1
), pp.
27
35
.10.1109/TMTT.2008.2009085
25.
Imen
,
M.
,
Mansouri
,
M.
, and
Shoorehdeli
,
M. A.
,
2011
, “
Tracking Control of Mobile Robot Using ANFIS
,” Proceedings of the 2011
IEEE
International Conference on Mechatronics and Automation,
Beijing, China
.10.1109/ICMA.2011.5985695
You do not currently have access to this content.