The effects of the uncertainties of various parameters, including the laser fluence, diameter of metal powder particles, laser pulse width, and the initial temperature of metal particles on solid-liquid-vapor phase change processes of metal particles under nanosecond laser heating are investigated in this paper. A systematic approach of simulating the phase change with uncertain parameters is presented and a sample-based stochastic model is established in order to investigate the influence of different uncertain parameters on the maximum surface temperature of metal particles, the maximum solid-liquid interface location, maximum liquid-vapor interface location, maximum saturation temperature, and maximum recoil pressure and the time needed to reach the maximum solid-liquid interface location. The results show that the mean value and standard deviation of the laser fluence have dominant effects on all output parameters.

References

References
1.
Beaman
,
J. J.
,
Barlow
,
J. W.
,
Bourell
,
D. L.
,
Crawford
,
R. H.
,
Marcus
,
H. L.
, and
McAlea
,
K. P.
,
1997
,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer
,
Dordrecht
, The Netherlands.
2.
Conley
,
J. G.
, and
Marcus
,
H. L.
,
1997
, “
Rapid Prototyping and Solid Free Form Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
(4B), pp.
811
816
.10.1115/1.2836828
3.
Chen
,
T.
, and
Zhang
,
Y.
,
2006
, “
Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
299
306
.10.1115/1.2122947
4.
Chen
,
T.
, and
Zhang
,
Y.
,
2007
, “
Three-Dimensional Modeling of Laser Sintering of a Two-Component Metal Powder Layer on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
575
582
.10.1115/1.2716714
5.
Xiao
,
B.
, and
Zhang
,
Y.
,
2008
, “
Numerical Simulation of Direct Metal Laser Sintering of Single-Component Powder on Top of Sintered Layers
,”
ASME J. Manuf. Sci. Eng.
,
130
(
4
), p.
041002
.10.1115/1.2951948
6.
Fischer
,
P.
,
Leber
,
H.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Andre
,
C.
, and
Glardon
,
R.
,
2004
, “
Microstructure of Near-Infrared Pulsed Laser Sintered Titanium Samples
,”
Appl. Phys. A: Mater. Sci. Process.
,
78
(
8
), pp.
1219
1227
.10.1007/s00339-003-2205-6
7.
Fischer
,
P.
,
Romano
,
V.
,
Blatter
,
A.
, and
Webler
,
H. P.
,
2005
, “
Highly Precise Pulsed Selective Laser Sintering of Metallic Powders
,”
Laser Phys. Lett.
,
2
(
1
), pp.
48
55
.10.1002/lapl.200410118
8.
Shi
,
Y.
,
Zhang
,
Y.
, and
Konrad
,
C.
,
2007
, “
Solid-Liquid-Vapor Phase Change of a Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating
,”
Nanoscale Microscale Thermophys. Eng.
,
11
, pp.
301
318
.10.1080/15567260701715396
9.
Acquah
,
C.
,
Datskov
,
I.
,
Mawardi
,
A.
,
Zhang
,
F.
,
Achenie
,
L. E. K.
,
Pitchumani
,
R.
, and
Santos
E.
,
2006
, “
Optimization of an Optical Fiber Drawing Process Under Uncertainty
,”
Ind. Eng. Chem. Res.
,
45
, pp.
8475
8483
.10.1021/ie060045u
10.
Padmanabhan
,
S. K.
, and
Pitchumani
,
R.
,
1999
, “
Stochastic Modeling of Non-isothermal Flow During Resin Transfer Molding
,”
Int. J. Heat Mass Transfer
,
42
(
16
), pp.
3057
3070
.10.1016/S0017-9310(98)00377-9
11.
Diwekar
,
U. M.
, and
Rubin
,
E. S.
, 1991, “
Stochastic Modeling of Chemical Processes
,”
Comput. Chem. Eng.
,
15
(
2
), pp.
105
114
.10.1016/0098-1354(91)87009-X
12.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2008
, “
Numerical Simulations of an Optical Fiber Drawing Process Under Uncertainty
,”
J. Lightwave Technol.
,
26
(
5
), pp. 580–587.10.1109/JLT.2007.912527
13.
Myers
,
M. R.
,
1989
, “
A Model for Unsteady Analysis of Preform Drawing
,”
AIChE J.
,
35
(
4
), pp.
592
602
.10.1002/aic.690350409
14.
Campbell
,
J. E.,
and
Rao
,
B. S. R.
,
1987
, “
An Uncertainty Analysis Methodology Applied to Sheetpile Cofferdam Design
,”
J. Hydraul. Eng.
,
41
, pp.
36
41
.
15.
Apostolakis
,
G.
,
1990
, “
The Concept of Probability in Safety Assessments of Technological Systems
,”
Science
,
250
, pp.
1359
1364
.10.1126/science.2255906
16.
Mawardi
,
A.,
and
Pitchumani
,
R.
,
2006
, “
Effect of Parameter Uncertainty on the Performance Variability of Proton Exchange Membrane (PEM) Fuel Cells
,”
J. Power Sources
,
160
, pp.
232
245
.10.1016/j.jpowsour.2006.01.017
17.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2004
, “
Cure Cycle Design for Thermosetting-Matrix Composites Fabrication Under Uncertainty
,”
Ann. Operat. Res.
,
132
, pp.
19
45
.10.1023/B:ANOR.0000045275.81357.ca
18.
Konrad
,
C.
,
Zhang
,
Y.
, and
Shi
,
Y.
,
2007
, “
Melting and Resolidification of Subcooled Metal Powder Particle Subjected to Nanosecond Laser Heating
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2236
2245
.10.1016/j.ijheatmasstransfer.2006.10.041
19.
Fisher
,
P.
,
Romano
, V
.
,
Weber
,
H. P.
, and
Kolossov
,
S.
,
2004
, “
Pulsed Laser Sintering of Metallic Powders
,”
Thin Solid Films
,
453–454
, pp.
139
144
.10.1016/j.tsf.2003.11.152
20.
Bellantone
,
R.
, and
Ganesh
,
R. K.
,
1991
, “
Analysis Model for Laser Hold Drilling
,” Contract II, Pratt and Whitney Aircraft, East Hartford, CT, Final Report (submitted).
21.
Ganesh
,
R. K.
,
Faghri
,
A.
, and
Hahn
,
Y.
,
1997
, “
A Generalized Thermal Modeling for Laser Drilling Process—I: Mathematical Modeling and Numerical Methodology
,”
Int. J. Heat Mass Transfer
,
40
, pp.
3351
3360
.10.1016/S0017-9310(96)00368-7
You do not currently have access to this content.