Dynamic response of a machine tool structure varies along the tool path depending on the changes in its structural configurations. The productivity of the machine tool varies as a function of its frequency response function (FRF) which determines its chatter stability and productivity. This paper presents a computationally efficient reduced order model to obtain the FRF at the tool center point of a machine tool at any desired position within its work volume. The machine tool is represented by its position invariant substructures. These substructures are assembled at the contacting interfaces by using novel adaptations of constraint formulations. As the tool moves to a new position, these constraint equations are updated to predict the FRFs efficiently without having to use computationally costly full order finite element or modal models. To facilitate dynamic substructuring, an improved variant of standard component mode synthesis method is developed which automates reduced order determination by retaining only the important modes of the subsystems. Position-dependent dynamic behavior and chatter stability charts are successfully simulated for a virtual three axis milling machine, using the substructurally synthesized reduced order model. Stability lobes obtained using the reduced order model agree well with the corresponding full-order system.

References

References
1.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
2.
Sadek
,
M. M.
, and
Tobias
,
S. A.
,
1970
, “
Comparative Dynamic Acceptance Tests for Machine Tools Applied to Horizontal Milling Machines
,”
Proc. Inst. Mech. Eng.
,
185
, pp.
319
337
.10.1243/PIME_PROC_1970_185_039_02
3.
Bianchi
,
G.
,
Paolucci
,
F.
,
Van den Braembussche
,
P.
,
Van Brussel
,
H.
, and
Jovane
,
F.
,
1996
, “
Towards Virtual Engineering in Machine Tool Design
,”
CIRP Ann.
,
45
, pp.
381
384
.10.1016/S0007-8506(07)63085-6
4.
Zaeh
,
M. F.
, and
Siedl
,
D.
,
2007
, “
A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-Body Simulation for Machine Tools
,”
CIRP Ann.
,
56
, pp.
383
386
.10.1016/j.cirp.2007.05.089
5.
Aurich
,
J. C.
,
Biermann
,
D.
,
Blum
,
H.
,
Brecher
,
C.
,
Carstensen
,
C.
,
Denkena
,
B.
,
Klocke
,
F.
,
Kroger
,
M.
,
Steinmann
,
P.
, and
Weinert
,
K.
,
2009
, “
Modelling and Simulation of Process: Machine Interaction in Grinding
,”
Prod. Eng. Res. Dev.
,
3
, pp.
111
120
.10.1007/s11740-008-0137-x
6.
Okwudire
,
C.
,
2009
, “
Modeling and Control of High Speed Machine Tool Feed Drives
,” Ph.D. thesis, University of British Columbia,
Vancouver, BC, Canada
.
7.
da Silva
,
M. M.
,
Bruls
,
O.
,
Swevers
,
J.
,
Desmet
,
W.
, and
Van Brussel
,
H.
,
2009
, “
Computer-Aided Integrated Design for Machines With Varying Dynamics
,”
Mech. Mach. Theory
,
44
, pp.
1733
1745
.10.1016/j.mechmachtheory.2009.02.006
8.
Fonseca
,
P. D.
,
2000
, “
Simulation and Optimization of the Dynamic Behavior of Mechatronics Systems
,” Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium
9.
Givoli
,
D.
,
Barbone
,
P. E.
, and
Patlashenko
,
I.
,
2004
, “
Which are the Important Modes of a Subsystem?
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
1657
1678
.10.1002/nme.935
10.
Litz
,
L.
,
1981
, “
Order Reduction of Linear State-Space Models via Optimal Approximation of the Non-Dominant Modes
,”
Large Scale Syst.
,
2
, pp.
171
184
.
11.
Feliachi
,
A.
,
1990
, “
Identification of Critical Modes in Power Systems
,”
IEEE Trans. Power Syst.
,
5
, pp.
783
787
.10.1109/59.65906
12.
Shabana
,
A.
, and
Wehage
,
R. A.
,
1983
, “
Variable Degree-of-Freedom Component Mode Analysis of Inertia Flexible Mechanical Systems
,”
ASME J. Mech. Des.
,
105
(
3
), pp.
371
378
.10.1115/1.3267370
13.
Tayeb
,
S.
, and
Givoli
,
D.
,
2011
, “
Optimal Modal Reduction of Dynamic Subsystems: Extensions and Improvements
,”
Int. J. Numer. Methods Eng.
,
85
, pp.
1
30
.10.1002/nme.2949
14.
Park
,
K. C.
, and
Park
,
Y. H.
,
2004
, “
Partitioned Component Mode Synthesis via a Flexibility Approach
,”
AIAA J.
,
42
, pp.
1236
1245
.10.2514/1.10423
15.
Jakobsson
,
H.
,
Bengzon
,
F.
, and
Larson
,
M.
,
2011
, “
Adaptive Component Mode Synthesis in Linear Elasticity
,”
Int. J. Numer. Methods Eng.
,
86
, pp.
829
844
.10.1002/nme.3078
16.
Farhat
,
C. G.
, and
Geradin
,
M.
,
1994
, “
On a Component Mode Synthesis Method and Its Application to Incompatible Substructures
,”
Comput. Struct.
,
51
, pp.
459
473
.10.1016/0045-7949(94)90053-1
17.
Heirman
,
G.
, and
Desmet
,
W.
,
2010
, “
Interface Reduction of Flexible Bodies for Efficient Modeling of Body Flexibility in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
24
, pp.
219
234
.10.1007/s11044-010-9198-7
18.
Liu
,
G. R.
, and
Quek
,
S. S.
,
2003
,
The Finite Element Method: A Practical Course
,
Butterworth-Heinemann
, Burlington, MA.
19.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamics Analyses
,”
AIAA J.
,
6
, pp.
1313
1319
.10.2514/3.4741
20.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
, p.
380
.10.2514/3.2874
21.
O'Callahan
,
J. C.
,
1989
, “
A Procedure for an Improved Reduced System (IRS) Model
,”
Proceedings of 7th IMAC
, pp.
17
21
.
22.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
,
1995
, “
Model Reduction Using Dynamic and Iterated IRS Techniques
,”
J. Sound Vib.
,
186
, pp.
311
323
.10.1006/jsvi.1995.0451
23.
Koutsovasilis
,
P.
, and
Beitelschmidt
,
M.
,
2010
, “
Model Order Reduction of Finite Element Models: Improved Component Mode Synthesis
,”
Math. Comput. Model. Dyn. Syst.
,
16
, pp.
57
73
.10.1080/13873951003590214
24.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice, and Application
,
Research Studies Press
, Baldok, Hertfordshire, UK.
25.
Chen
,
G.
,
2001
, “
FE Model Validation for Structural Dynamics
,” Ph.D. thesis, Imperial College of Science, Technology & Medicine, University of London, London.
26.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.10.1115/1.1802311
27.
ANSYS V12
,
2009
, Documentation for ANSYS.
28.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
, pp.
357
362
.10.1016/S0007-8506(07)62342-7
29.
Zulaika
,
J. J.
,
Campa
,
F. J.
, and
Lopez de Lacalle
,
L. N.
,
2011
, “
An Integrated Process–Machine Approach for Designing Productive and Lightweight Milling Machines
,”
Int. J. Mach. Tools Manuf.
,
51
, pp.
591
604
.10.1016/j.ijmachtools.2011.04.003
You do not currently have access to this content.