Melting, vaporization, and resolidification in a gold thin film subject to multiple femtosecond laser pulses are numerically studied in the framework of the two-temperature model. The solid-liquid phase change is modeled using a kinetics controlled model that allows the interfacial temperature to deviate from the melting point. The kinetics controlled model also allows superheating in the solid phase during melting and undercooling in the liquid phase during resolidification. Superheating of the liquid phase caused by nonequilibrium evaporation of the liquid phase is modeled by adopting the wave hypothesis, instead of the Clausius–Clapeyron equation. The melting depth, ablation depth, and maximum temperature in both the liquid and solid are investigated and the result is compared with that from the Clausius–Clapeyron equation based vaporization model. The vaporization wave model predicts a much higher vaporization speed, which leads to a deeper ablation depth. The relationship between laser processing parameters, including pulse separation time and pulse number, and the phase change effect are also studied. It is found that a longer separation time and larger pulse number will cause lower maximum temperature within the gold film and lower depths of melting and ablation.

References

References
1.
Huang
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Superheating in Liquid and Solid Phases During Femtosecond-Laser Pulse Interaction With Metal Film
,”
J. Appl. Phys. A
,
103
, pp.
113
121
.10.1007/s00339-010-6175-1
2.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
3.
Zhigilei
,
L. V.
,
Kodali
,
P. B. S.
, and
Garrison
,
B. J.
,
1997
, “
Molecular Dynamic Model for Laser Ablation and Desorption of Organic Solids
,”
J. Phys. Chem. B
,
101
, pp.
2028
2037
.10.1021/jp9634013
4.
Xu
,
X.
, and
Willis
,
D. A.
,
2002
, “
Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation
,”
ASME J. Heat Transfer
,
124
(2)
, pp.
293
298
.10.1115/1.1445792
5.
Perez
,
D.
, and
Lewis
,
L. J.
,
2003
, “
Molecular-Dynamics Study of Ablation of Solids Under Femtosecond Laser Pulses
,”
Phys. Rev. B
,
67
(
18
), p.
184102
.10.1103/PhysRevB.67.184102
6.
Schäfer
,
C.
, and
Urbassek
,
H. M.
,
2002
, “
Metal Ablation by Picosecond Laser Pulses: A Hybrid Simulation
,”
Phys. Rev. B
,
66
, p.
115404
.10.1103/PhysRevB.66.115404
7.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel'man
,
T. L.
,
1974
, “
Electron Emission from Metal Surface Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
,
39
(
2
), pp.
375
377
.
8.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
835
841
.10.1115/1.2911377
9.
Tzou
,
D. Y.
,
1997
,
Macro- to Microscale Heat Transfer
,
Taylor & Francis
,
Washington, DC
.
10.
Tzou
,
D. Y.
,
2006
,
Handbook of Numerical Heat Transfer
,
2nd ed.
,
Wiley
,
Hoboken, NJ
, Chap. 20.
11.
Jiang
,
L.
, and
Tsai
,
H. L.
,
2005
, “
Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1167
1173
.10.1115/1.2035113
12.
Chen
,
J. K.
,
Tzou
,
D. Y.
, and
Beraun
,
J. E.
,
2006
, “
A Semiclassical Two-Temperature Model for Ultrafast Laser Heating
,”
Int. J. Heat Transfer
,
49
(
1–2
), pp.
307
316
.10.1016/j.ijheatmasstransfer.2005.06.022
13.
Huang
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Ultrafast Solid-Liquid-Vapor Phase Change in a Thin Gold Film Irradiated by Multiple Femtosecond Laser Pulses
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3091
3100
.10.1016/j.ijheatmasstransfer.2009.02.009
14.
Bennett
,
F. D.
,
1971
,
Vaporization-Wave Transitions in Physics of High Energy Density
,
Academic
,
New York
.
15.
Harris
,
L.
, and
Loeb
,
A. L.
,
1953
, “
Conductance and Relaxation Time of Electrons in Gold Blocks From Transmission and Reflection Measurements in the Far Infrared
,”
J. Opt. Soc. Am.
,
43
, pp.
1114
1118
.10.1364/JOSA.43.001114
16.
Ren
,
Y.
,
Chen
,
J. K.
,
Zhang
,
Y.
, and
Huang
,
J.
,
2011
, “
Ultrashort Laser Pulse Energy Deposition in Metal Films With Phase Changes
,”
Appl. Phys. Lett.
,
98
(
19
), p.
191105
.10.1063/1.3579539
17.
Kuo
,
L. S.
, and
Qiu
,
T.
,
1996
, “
Microscale Energy Transfer During Picosecond Laser Melting of Metal Films
,”
ASME National Heat Transfer Conference, ASME
,
New York
, p.
149
.
18.
Anisimov
,
S. I.
, and
Rethfeld
,
B.
,
1997
, “
The Theory of Ultrashort Laser Pulse Interaction With a Metal
,”
Proc. SPIE
,
3093
, pp.
192
203
.10.1117/12.271674
19.
Chen
,
J. K.
,
Latham
,
W. P.
, and
Beraun
,
J. E.
,
2005
, “
The Role of Electron–Phonon Coupling in Ultrafast Laser Heating
,”
J. Laser Appl.
,
17
, pp.
63
68
.10.2351/1.1848522
20.
Wellershoff
,
S. S.
,
Hohlfeld
,
J.
,
Güdde
,
J.
, and
Matthia
,
E.
,
1999
, “
The Role of Electron–Phonon Coupling in Femtosecond Laser Damage of Metal
,”
Appl. Phys. A: Mat. Sci. Process.
,
69
(
7
), pp.
99
107
.
21.
Klemens
,
P. G.
, and
Williams
,
R. K.
,
1986
, “
Thermal Conductivity of Metals and Alloys
,”
Int. Met. Rev.
,
31
, pp.
197
215
.10.1179/095066086790324294
22.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
Burlington, MA
.
23.
Courant
,
R.
, and
Friedrichs
,
K. O.
,
1976
,
Supersonic Flow and Shock Waves
, Vol.
21
,
InterScience
,
New York
, p.
92
.
24.
Zhang
,
Y.
, and
Chen
,
J. K.
,
2008
, “
An Interfacial Tracking Method for Ultrashort Pulse Laser Melting and Resolidification of a Thin Metal Film
,”
ASME J. Heat Transfer
,
130
(6)
, p.
062401
.10.1115/1.2891159
25.
Zhigilei
,
L. V.
, and
Garrison
,
B. J.
,
1999
, “
Mechanisms of Laser Ablation From Molecular Dynamics Simulations: Dependence on the Initial Temperature and Pulse Duration
,”
Appl. Phys. A
,
69
, pp.
S75
S80
.10.1007/s003399900347
You do not currently have access to this content.