Manufacturing of lithium-ion battery packs for electric or hybrid electric vehicles requires a significant amount of joining, such as welding, to meet the desired power and capacity needs. However, conventional fusion welding processes, such as resistance spot welding and laser welding, face difficulties in joining multiple sheets of highly conductive, dissimilar materials to create large weld areas. Ultrasonic metal welding overcomes these difficulties by using its inherent advantages derived from its solid-state process characteristics. Although ultrasonic metal welding is well-qualified for battery manufacturing, there is a lack of scientific quality guidelines for implementing ultrasonic welding in volume production. In order to establish such quality guidelines, this paper first identifies a number of critical weld attributes that determine the quality of welds by experimentally characterizing the weld formation over time using copper-to-copper welding as an example. Samples of different weld quality were cross-sectioned and characterized with optical microscopy, scanning electronic microscopy (SEM), and hardness measurements in order to identify the relationship between physical weld attributes and weld performance. A novel microstructural classification method for the weld region of an ultrasonic metal weld is introduced to complete the weld quality characterization. The methodology provided in this paper links process parameters to weld performance through physical weld attributes.

References

References
1.
Lee
,
S. S.
,
Kim
,
T. H.
,
Hu
,
S. J.
,
Cai
,
W. W.
, and
Abell
,
J. A.
,
2010
, “
Joining Technologies for Automotive Lithium-Ion Battery Manufacturing: A Review
,”
ASME Conf. Proc.
, Vol. 1, pp.
541
549
.10.1115/MSEC2010-34168
2.
Hu
,
S. J.
,
Senkara
,
J.
, and
Zhang
,
H.
,
1996
, “
Performance Characteristics of Resistance Spot Welds in the Automotive Industry: A Structural Point of View
,”
Proceedings of IBEC' 96 Body and Engineering
, pp.
91
98
.
3.
Kong
,
C.
,
Soar
,
R.
, and
Dickens
,
P.
,
2003
, “
Characterisation of Aluminium Alloy 6061 for the Ultrasonic Consolidation Process
,”
Mater. Sci. Eng., A
,
363
(
1–2
), pp.
99
106
.10.1016/S0921-5093(03)00590-2
4.
Kong
,
C.
,
Soar
,
R.
, and
Dickens
,
P.
,
2004
, “
Optimum Process Parameters for Ultrasonic Consolidation of 3003 Aluminium
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
181
187
.10.1016/j.jmatprotec.2003.10.016
5.
Yang
,
Y.
,
Ram
,
G. D. J.
, and
Stucker
,
B. E.
,
2010
, “
An Analytical Energy Model for Metal Foil Deposition in Ultrasonic Consolidation
,”
Rapid Prototyping J.
,
16
(
1
), pp.
20
28
.10.1108/13552541011011668
6.
Hetrick
,
E.
,
Baer
,
J.
,
Zhu
,
W.
,
Reatherford
,
L.
,
Grima
,
A.
,
Scholl
,
D.
,
Wilkosz
,
D.
,
Fatima
,
S.
, and
Ward
,
S.
,
2009
, “
Ultrasonic Metal Welding Process Robustness in Aluminum Automotive Body Construction Applications
,”
Weld. J.
,
88
(
7
), pp. 149S–158S.
7.
Bakavos
,
D.
, and
Prangnell
,
P. B.
,
2010
, “
Mechanisms of Joint and Microstructure Formation in High Power Ultrasonic Spot Welding 6111 Aluminium Automotive Sheet
,”
Mater. Sci. Eng., A
,
527
(
23
), pp.
6320
6334
.10.1016/j.msea.2010.06.038
8.
Zhou
,
B.
,
Thouless
,
M.
, and
Ward
,
S.
,
2006
, “
Predicting the Failure of Ultrasonic Spot Welds by Pull-Out From Sheet Metal
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7482
7500
.10.1016/j.ijsolstr.2006.03.009
9.
Zhou
,
B.
,
Thouless
,
M. D.
, and
Ward
,
S.
,
2005
, “
Determining Mode-I Cohesive Parameters for Nugget Fracture in Ultrasonic Spot Welds
,”
Int. J. Fract.
,
136
(
1
), pp.
309
326
.10.1007/s10704-005-6036-7
10.
Kim
,
T. H.
,
Yum
,
J.
,
Hu
,
S. J.
,
Spicer
,
J. P.
, and
Abell
,
J. A.
,
2011
, “
Process Robustness of Single Lap Ultrasonic Welding of Thin, Dissimilar Materials
,”
CIRP Ann.
,
60
(
1
), pp.
17
20
.10.1016/j.cirp.2011.03.016
11.
Zhou
,
M.
,
Zhang
,
H.
, and
Hu
,
S. J.
,
2003
, “
Relationships Between Quality and Attributes of Spot Welds
,”
Weld. J.
,
82
(
Compendex
), pp.
72S
77S
.
12.
Zhang
,
C.
, and
Li
,
L.
,
2009
, “
A Coupled Thermal-Mechanical Analysis of Ultrasonic Bonding Mechanism
,”
Metall. Mater. Trans. B
,
40
(
2
), pp.
196
207
.10.1007/s11663-008-9224-9
13.
Ram
,
G. D. J.
,
Robinson
,
C.
,
Yang
,
Y.
, and
Stucker
,
B.
,
2007
, “
Use of Ultrasonic Consolidation for Fabrication of Multi-Material Structures
,”
Rapid Prototyping J.
,
13
(
4
), pp.
226
235
.10.1108/13552540710776179
14.
Cheng
,
X.
, and
Li
,
X.
,
2007
, “
Investigation of Heat Generation in Ultrasonic Metal Welding Using Micro Sensor Arrays
,”
J. Micromech. Microeng.
,
17
, pp. 273–282.10.1088/0960-1317/17/2/013
15.
Ji
,
H.
,
Li
,
M.
,
Kung
,
A. T.
,
Wang
,
C.
, and
Li
,
D.
,
2005
, “
The Diffusion of Ni Into Al Wire at the Interface of Ultrasonic Wire Bond During High Temperature Storage
,”
6th International Conference on Electronic Packaging Technology
,
IEEE
, pp.
377
381
./10.1109/ICEPT.2005.1564652
16.
Li
,
J.
,
Han
,
L.
, and
Zhong
,
J.
,
2008
, “
Short Circuit Diffusion of Ultrasonic Bonding Interfaces in Microelectronic Packaging
,”
Surf. Interface Anal.
,
40
(
5
), pp.
953
957
.10.1002/sia.2840
17.
Gunduz
,
I. E.
,
Ando
,
T.
,
Shattuck
,
E.
,
Wong
,
P. Y.
, and
Doumanidis
,
C. C.
,
2005
, “
Enhanced Diffusion and Phase Transformations During Ultrasonic Welding of Zinc and Aluminum
,”
Scr. Mater.
,
52
(
9
), pp.
939
943
.10.1016/j.scriptamat.2004.12.015
18.
Kreye
,
H.
,
1977
, “
Melting Phenomena in Solid State Welding Processes
,”
Weld. J.
,
56
(
5
), pp.
154
158
.
19.
Joshi
,
K. C.
,
1971
, “
The Formation of Ultrasonic Bonds Between Metals
,”
Weld. J.
,
50
(
12
), pp.
840
848
.
20.
Zhou
,
M.
,
Hu
,
S. J.
, and
Zhang
,
H.
,
1999
, “
Critical Specimen Sizes for Tensile-Shear Testing of Steel Sheets
,”
Weld. J.
,
78
(
9
), pp.
305S
313S
.
21.
Cáceres
,
C. H.
,
Griffiths
,
J. R.
,
Pakdel
,
A. R.
, and
Davidson
,
C. J.
,
2005
, “
Microhardness Mapping and the Hardness-Yield Strength Relationship in High-Pressure Diecast Magnesium Alloy AZ91
,”
Mater. Sci. Eng., A
,
402
(
1–2
), pp.
258
268
.10.1016/j.msea.2005.04.042
22.
de Geuser, F.,
Bley
,
F.
,
Denquin
,
A.
, and
Deschamps
,
A.
,
2010
, “
Mapping the Microstructure of a Friction-Stir Welded (FSW) Al-Li-Cu Alloy
,”
Proc. J. Phys. Conf. Ser.
,
247
, p.
012034
.10.1088/1742-6596/247/1/012034
23.
Prangnell
,
P. B.
, and
Heason
,
C. P.
,
2005
, “
Grain Structure Formation During Friction Stir Welding Observed by the `Stop Action Technique
',”
Acta Mater.
,
53
(
11
), pp.
3179
3192
.10.1016/j.actamat.2005.03.044
24.
Steuwer
,
A.
,
Dumont
,
M.
,
Altenkirch
,
J.
,
Birosca
,
S.
,
Deschamps
,
A.
,
Prangnell
,
P.
, and
Withers
,
P.
,
2011
, “
A Combined Approach to Microstructure Mapping of an Al-Li AA2199 Friction Stir Weld
,”
Acta Mater.
, 59(8), pp. 3002–3011.10.1016/j.actamat.2011.01.040
You do not currently have access to this content.