In drilling, the primary and secondary cutting lips of the drill shear the material while the central portion of the chisel edge indents the workpiece, making the cutting process complex to understand. As we go for microdrilling, it exhibits an added complexity to the cutting mechanism as the edge radius gets comparable to chip thickness at low feeds. The presented work models the forces by the primary cutting lip of a microdrill analytically using slip-line field that includes the changes in the effective rake angle and dead metal cap during cutting for cases of shearing as well as ploughing. To study the variation of forces experimentally, the primary cutting lip and chisel edge forces are separated out by drilling through pilot holes of diameter slightly above the drill-web thickness. Finally, the analytical and experimental results are compared and the model is calibrated.

References

References
1.
Chyan
,
H. C.
, and
Ehmann
,
K. F.
,
1998
, “
Development of Curved Helical Micro-Drill Point Technology for Micro-Hole Drilling
,”
Mechatronics
,
8
, pp.
337
358
.10.1016/S0957-4158(97)00055-X
2.
Fu
,
L.
,
Ling
,
S. F.
, and
Tseng
,
C. H.
,
2007
, “
On-Line Breakage Monitoring of Small Drills With Input Impedance of Driving Motor
,”
Mech. Syst. Signal Process.
,
21
, pp.
457
465
.10.1016/j.ymssp.2005.04.004
3.
Hinds
,
B. K.
, and
Treanor
,
G. M.
,
2000
, “
Analysis of Stresses in Micro-Drills Using the Finite Element Method
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
1443
1456
.10.1016/S0890-6955(00)00007-9
4.
Vogler
,
M. P.
,
2003
, “
On the Modeling and Analysis of Machining Performance in Micro-End-Milling
,” Ph.D. thesis, University of Illinois at Urbana Champaign (UIUC), IL.
5.
Jun
,
M.
,
2005
, “
Modeling and Analysis of Micro-End-Milling Dynamics
,” Ph.D. thesis, University of Illinois at Urbana Champaign (UIUC), IL.
6.
Zaman
,
M. T.
,
Kumar
,
A. S.
,
Rahman
,
M.
, and
Sreeram
,
S.
,
2006
, “
A Three-Dimensional Analytical Cutting Force Model for Micro-End-Milling Operation
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
353
366
.10.1016/j.ijmachtools.2005.05.021
7.
Kang
,
I. S.
,
Kim
,
J. S.
,
Kim
,
J. H.
,
Kang
,
M. C.
, and
Seo
,
Y. W.
,
2007
, “
A Mechanistic Model of Cutting Force in the Micro-End-Milling Process
,”
J. Mater. Process. Technol.
,
187–188
, pp.
250
255
.10.1016/j.jmatprotec.2006.11.155
8.
Newby
,
G.
,
Venkatachalam
,
S.
, and
Liang
,
S. Y.
,
2007
, “
Empirical Analysis of Cutting Force Constants in Micro-End-Milling Operations
,”
J. Mater. Process. Technol.
,
192–193
, pp.
41
47
.10.1016/j.jmatprotec.2007.04.026
9.
Liu
,
X.
,
Jun
,
M. B.
,
DeVor
,
R. E.
, and
Kappor
,
S. G.
,
2004
, “
Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-End-Milling
,”
Proceedings ASME International Mechanical Engineering Congress and Exposition, Anaheim
, CA, pp. 13–20.
10.
Kim
,
C. J.
,
Mayor
,
J. R.
, and
Ni
,
J.
,
2004
, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(4)
, pp.
710
718
.10.1115/1.1813475
11.
Bao
,
W. Y.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations. Part I: Analytical Cutting Force Model
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
2155
2173
.10.1016/S0890-6955(00)00054-7
12.
Demir
,
E.
,
2008
, “
Taylor-Based Model for Micro-Machining of Single Crystal FCC Materials Including Frictional Effects—Application to Micro-Milling Process
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
1592
1598
.10.1016/j.ijmachtools.2008.07.002
13.
Rusnaldy
,
X.
,
Ko
,
T. J.
, and
Kim
,
H. S.
,
2007
, “
Micro-End-Milling of Single Crystal Silicon
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
2111
2119
.10.1016/j.ijmachtools.2007.05.003
14.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(4B)
, pp.
655
663
.10.1115/1.2836805
15.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
J. Appl. Mech.
,
11
, pp.
168
175
.
16.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(4)
, pp.
693
699
.10.1115/1.2830208
17.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
, pp.
715
742
.10.1016/S0022-5096(02)00060-1
18.
Liu
,
X.
,
2006
, “
Cutting Mechanisms in Micro-End-Milling and Their Influence on Surface Generation
,” Ph. D. thesis, University of Illinois at Urbana Champaign (UIUC), IL.
19.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A Study of Apparent Negative Rake Angle and Its Effects on Shear Angle During Orthogonal Cutting With Edge-Radiused Tools
,”
Trans. NAMRI/SME
,
27
, pp.
197
202
.
20.
Kountanya
,
R. K.
, and
Endres
,
W. J.
,
2001
, “
A High-Magnification Experimental Study of Orthogonal Cutting With Edge-Honed Tools
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
, pp.
157
164
.
21.
Sambhav
,
K.
,
Tandon
,
P.
, and
Dhande
,
S. G.
,
2012
, “
Geometric Modeling and Validation of Twist Drills With a Generic Point Profile
,”
Appl. Math. Model.
,
36
, pp.
2384
2403
.10.1016/j.apm.2011.08.034
22.
Shaw
,
M. C.
, and
Oxford
,
C. J.
, Jr.
,
1957
, “
On the Drilling of Metals -2. The Torque and Thrust in Drilling
,”
Trans. ASME
,
79
(
1
), pp.
139
148
.
You do not currently have access to this content.