Edge chipping is one of the most serious issues during machining process of brittle materials. To find an effective method to reduce edge chipping, the relationship between the distribution of maximum principal stress and edge chipping is studied comprehensively based on 3D finite element analysis (FEA) model of in-process workpiece structure in this paper. Three-level influencing factors of edge chipping are proposed, which are helpful to understand the relationship between intuitive machining parameters and edge chipping at different levels. Based on the analysis, several experiments are designed and conducted for drilling and slotting to study the strategy of controlling edge chipping. Two methods are adopted: (a) adding additional support, (b) improving tool path. The result show that edge chipping can be reduced effectively by optimizing the distribution of the maximum principal stress during the machining process. Further, adding addtitional support method is extended to more complex parts and also obtain a good result. Finally, how to use adding additional support method, especially for complex parts, will be discussed in detail. Several open questions are raised for future research.

References

References
1.
Yang
,
B.
,
Shen
,
X.
, and
Lei
,
S.
,
2009
, “
Mechanisms of Edge Chipping in Laser-Assisted Milling of Silicon Nitride Ceramics
,”
Int. J. Mach. Tools Manuf.
,
49
, pp.
344
350
.10.1016/j.ijmachtools.2008.09.006
2.
Ng
,
S. J.
,
Le
,
D. T.
,
Tucker
,
S. R.
, and
Zhang
,
G.
,
1996
, “
Control of Machining Induced Edge Chipping on Glass Ceramics
,” Technical Research Report No. TR 1996-3.
3.
Cao
,
Y.
,
2001
, “
Failure Analysis of Exit Edges in Ceramic Machining Using Finite Element Analysis
,”
Eng. Failure Anal.
,
8
, pp.
325
338
.10.1016/S1350-6307(00)00024-8
4.
Li
,
Z. C.
,
Cai
,
L. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2006
, “
Edge-Chipping Reduction in Rotary Ultrasonic Machining of Ceramics: Finite Element Analysis and Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
1469
1477
.10.1016/j.ijmachtools.2005.09.002
5.
Ohbuchi
,
Y.
,
Matsuo
,
T.
, and
Sakat
,
M.
,
1995
, “
Chipping in High-Precision Slot Grinding of Mn-Zn Ferrite
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
273
277
.10.1016/S0007-8506(07)62324-5
6.
Jiao
,
Y.
,
Liu
,
W. J.
,
Pei
,
Z. J.
,
Xin
,
X. J.
, and
Treadwell
,
C.
,
2005
, “
Study on Edge Chipping in Rotary Ultrasonic Machining on Ceramics: An Integration of Designed Experiments and Finite Element Method Analysis
,”
ASME J. Manuf. Sci. Eng.
,
127
(4), pp.
752
758
.10.1115/1.2034511
7.
Arif
,
M.
,
Rahman
,
M.
, and
San
,
W. Y.
,
2012
, “
A Model to Determine the Effect of Tool Diameter on the Critical Feed Rate for Ductile-Brittle Transition in Milling Process
of Brittle Material,”
ASME J. Manuf. Sci. Eng.
,
134
(5), p.
051012
.10.1115/1.4007462
8.
Ahmed
,
Y.
,
Cong
,
W. L.
,
Stanco
,
M. R.
,
Xu
,
Z. G.
,
Pei
,
Z. J.
,
Treadwell
,
C.
,
Zhu
,
Y. L.
, and
Li
,
Z. C.
,
2012
, “
Rotary Ultrasonic Machining of Alumina Dental Ceramics: A Preliminary Experimental Study on Surface and Subsurface Damages
,”
ASME J. Manuf. Sci. Eng.
,
134
(6), p.
064501
.10.1115/1.4007711
9.
Chiu
,
W. C.
,
Thouless
,
M. D.
, and
Endres
,
W. J.
,
1998
, “
An Analysis of Chipping in Brittle Materials
,”
Int. J. Fract.
,
90
, pp.
287
298
.10.1023/A:1007425230687
10.
Morrell
,
R.
, and
Gant
,
A. J.
,
2001
, “
Edge Chipping of Hard Materials
,”
Int. J. Refract. Hard Met.
,
19
, pp.
293
301
.10.1016/S0263-4368(01)00030-0
11.
Quinn
,
J. B.
,
Sundar
,
V.
,
Parry
,
E. E.
, and
Quinn
,
G. D.
,
2010
, “
Comparison of Edge Chipping Resistance of PFM and Veneered Zirconia Specimens
,”
Dent. Mater.
,
26
, pp.
13
20
.10.1016/j.dental.2009.08.005
12.
Mohajerani
,
A.
, and
Spelt
,
J. K.
,
2010
, “
Edge Chipping of Borosilicate Glass by Blunt Indentation
,”
Mech. Mater.
,
42
, pp.
1064
1080
.10.1016/j.mechmat.2010.10.002
13.
Pei
,
Z. J.
, and
Ferreira
,
P. M.
,
1999
, “
An Experimental Investigation of Rotary Ultrasonic Face Milling
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
1327
1344
.10.1016/S0890-6955(98)00093-5
14.
Li
,
Z. C.
,
Jiao
,
Y.
,
Deines
,
T. W.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2005
, “
Rotary Ultrasonic Machining of Ceramic Matrix Composites: Feasibility Study and Designed Experiments
,”
Int. J. Mach. Tools Manuf.
,
45
, pp.
1402
1411
.10.1016/j.ijmachtools.2005.01.034
15.
Gong
,
H.
,
Fang
,
F. Z.
, and
Hu
,
X. T.
,
2010
, “
Kinematic View of Tool Life in Rotary Ultrasonic Side Milling of Hard and Brittle Materials
,”
Int. J. Mach. Tools Manuf.
,
50
, pp.
303
307
.10.1016/j.ijmachtools.2009.12.006
16.
Zhao
,
C.-Y.
,
Gong
,
H.
, and
Fang
,
F. Z.
, “
Experimental Study on the Cutting Force Difference Between Rotary Ultrasonic Machining and Conventional Diamond Grinding of K9 Glass
,”
Mach. Sci. Technol.
(in press).10.1080/10910344.2012.747930
17.
Wu
,
J.
,
Cong
,
W.
,
Williams
,
R. E.
, and
Pei
,
Z. J.
,
2011
, “
Dynamic Process Modeling for Rotary Ultrasonic Machining of Alumina
,”
ASME J. Manuf. Sci. Eng.
,
133
(4), p.
041012
.10.1115/1.4004688
You do not currently have access to this content.