Interpass idle time is an important parameter affecting the thermal stress distribution in weld-based rapid prototyping. In this paper, the effects of interpass idle time on thermal stresses in multipass multilayer weld-based rapid prototyping are investigated using numerical simulation. Meanwhile the single-layer weld-based rapid prototyping experiment is carried out, and the residual stresses are measured in the blind-hole method. The variation trend of calculated residual stresses agrees with that of experimental measurements. The research results indicate that there exist stress release effects of rear pass on fore passes and that of rear layer on fore layers. The interpass and interlayer stresses and residual stresses are significantly dependent on interpass idle time. The residual stresses of deposition workpiece decrease with the increase of interpass idle time, whereas the interpass and interlayer stresses on the central line of substrate increase with the increase of interpass idle time.

References

1.
Colegrove
,
P.
,
Ikeagu
,
C.
,
Thistlethwaite
,
A.
,
Williams
,
S.
,
Nagy
,
T.
,
Suder
,
W.
,
Steuwer
,
A.
, and
Pirling
,
T.
,
2009
, “
Welding Process Impact on Residual Stress and Distortion
,”
Sci. Technol. Weld. Joining
,
14
, pp.
717
725
.10.1179/136217109X406938
2.
Zhang
,
H. J.
,
Zhang
,
G. J.
,
Cai
,
C. B.
,
Gao
,
H. M.
, and
Wu
,
L.
,
2009
, “
The Realization of Low Stress and Nonangular Distortion by Double-Sided Double Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
131
(
2
), p.
021004
.10.1115/1.3070512
3.
Zhang
,
T.
,
Wu
,
C. S.
,
Qin
,
G. L.
,
Wang
,
X. Y.
, and
Lin
,
S. Y.
,
2010
, “
Thermomechanical Analysis for Laser + GMAW-P Hybrid Welding Process
,”
Comput. Mater. Sci.
,
47
, pp.
848
856
.10.1016/j.commatsci.2009.11.013
4.
Okano
,
S.
,
Tanaka
,
M.
, and
Mochizuki
,
M.
,
2011
, “
Arc Physics Based Heat Source Modelling for Numerical Simulation of Weld Residual Stress and Distortion
,”
Sci. Technol. Weld. Joining
,
16
, pp.
209
214
.10.1179/1362171810Y.0000000019
5.
Mughal
,
M. P.
,
Fawad
,
H.
, and
Mufti
,
R. A.
,
2006
, “
Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
, pp.
875
885
.10.1243/09544062JMES164
6.
Zhang
,
Y. M.
,
Chen
,
Y.
,
Li
,
P.
, and
Male
,
A. T.
,
2003
, “
Weld Deposition-Based Rapid Prototyping a Preliminary Study
,”
J. Mater. Process. Technol.
,
135
, pp.
347
357
.10.1016/S0924-0136(02)00867-1
7.
Zheng
,
B.
, and
Kovacevic
,
R.
,
2001
, “
A Novel Control Approach for the Droplet Detachment in Rapid Prototyping by 3D Welding
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
348
355
.10.1115/1.1345730
8.
Zhu
,
S.
,
Meng
,
F.
, and
Ba
,
D.
,
2008
, “
The Remanufacturing System Based on Robot MAG Surfacing
,”
Key Eng. Mater.
,
373–374
, pp.
400
403
.10.4028/www.scientific.net/KEM.373-374.400
9.
Dai
,
K.
, and
Shaw
,
L.
,
2001
, “
Thermal and Stress Modeling of Multi-Material Laser Processing
,”
Acta Mater.
,
49
, pp.
4171
4181
.10.1016/S1359-6454(01)00312-3
10.
Long
,
R.
,
Liu
,
W.
,
Xing
,
F.
, and
Wang
,
H. B.
,
2008
, “
Numerical Simulation of Thermal Behavior During Laser Metal Deposition Shaping
,”
Trans. Nonferrous Met. Soc. China.
,
18
, pp.
691
699
.10.1016/S1003-6326(08)60120-X
11.
Labudovic
,
M.
,
2003
, “
A Three Dimensional Model for Direct Laser Metal Powder Deposition and Rapid Prototyping
,”
J. Mater. Sci.
,
38
, pp.
35
49
.10.1023/A:1021153513925
12.
Nickel
,
A. H.
,
Barnett
,
D. M.
, and
Prinz
,
F. B.
,
2001
, “
Thermal Stresses and Deposition Patterns in Layered Manufacturing
,”
Mater. Sci. Eng. A.
,
317
, pp.
59
64
.10.1016/S0921-5093(01)01179-0
13.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
A 3D Dynamic Numerical Approach for Temperature and Thermal Stress Distributions in Multilayer Laser Solid Freeform Fabrication Process
,”
Opt. Lasers Eng.
,
45
, pp.
1115
1130
.10.1016/j.optlaseng.2007.06.010
14.
Tian
,
X.
,
Sun
,
B.
,
Heinrich
,
J. G.
, and
Li
,
D. C.
,
2010
, “
Stress Relief Mechanism in Layer-Wise Laser Directly Sintered Porcelain Ceramics
,”
Mater. Sci. Eng. A.
,
527
, pp.
1695
1703
.10.1016/j.msea.2009.10.058
15.
Wang
,
L.
,
Felicelli
,
S. D.
, and
Craig
,
J. E.
,
2009
, “
Experimental and Numerical Study of the LENS Rapid Fabrication Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041019
.10.1115/1.3173952
16.
Ribeiro
,
F.
,
Ogunbiyi
,
B.
, and
Norrish
,
J.
,
1997
, “
Mathematical Model of Welding Parameters for Rapid Prototyping Using Robot Welding
,”
Sci. Technol. Weld. Joining
,
2
, pp.
185
190
.10.1179/136217197791069984
17.
Mughal
,
M. P.
,
Fawad
,
H.
,
Mufti
,
R. A.
,
Siddique
,
M.
,
2005
, “
Deformation Modelling in Layered Manufacturing of Metallic Parts Using Gas Metal Arc Welding: Effect of Process Parameters
,”
Modell. Simul. Mater. Sci. Eng.
,
13
, pp.
1187
1204
.10.1088/0965-0393/13/7/013
18.
Goldak
,
J.
,
Chakravarti
,
A. P.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Mater. Trans. B.
,
15
, pp.
299
305
.10.1007/BF02667333
19.
Zhao
,
H. H.
,
Zhang
,
G. J.
,
Yin
,
Z. Q.
, and
Wu
,
L.
,
2012
, “
Three-Dimensional Finite Element Analysis of Thermal Stress in Single-Pass Multi-Layer Weld-Based Rapid Prototyping
,”
J. Mater. Process. Technol.
,
212
, pp.
276
285
.10.1016/j.jmatprotec.2011.09.012
20.
Lindgren
,
L.
,
2001
, “
Finite Element Modeling and Simulation of Welding Part 2: Improved Material Modeling
,”
J. Therm. Stresses
,
24
, pp.
195
231
.10.1080/014957301300006380
21.
Ferro
,
P.
,
Porzner
,
H.
,
Tiziani
,
A.
, and
Bonollo
,
F.
,
2006
, “
The Influence of Phase Transformations on Residual Stresses Induced by the Welding Process—3D and 2D Numerical Models
,”
Modell. Simul. Mater. Sci. Eng.
,
14
, pp.
117
136
.10.1088/0965-0393/14/2/001
22.
Abid
,
M.
, and
Siddique
,
M.
,
2005
, “
Numerical Simulation to Study the Effect of Tack Welds and Root Gap on Welding Deformations and Residual Stresses of a Pipe-Flange Joint
,”
Int. J. Pressure Vessels Piping
,
82
, pp.
860
871
.10.1016/j.ijpvp.2005.06.008
You do not currently have access to this content.