Metal matrix nanocomposites (MMNCs) are produced by dispersing reinforcing nanoparticles into metal matrix. It is a type of emerging materials with high strength and light weight and draws significant attentions in recent years. If the particles are not well dispersed, they will form particle clusters in the metal matrix. These clusters will detrimentally impact on the final quality of MMNCs. This paper proposes a statistical approach to estimating the parameters of the size distribution of clusters in MMNCs. One critical challenge is that the clusters are distributed in a three-dimensional (3D) space, while the observations we have are two-dimensional (2D) cross-section microscopic images of these clusters. In the proposed approach, we first derived the probability distribution of the observed sizes of the 2D cross sections of the clusters and then a maximum likelihood estimation (MLE) method is developed to estimate the 3D cluster size distribution. Computational efficient algorithms are also established to make computational load manageable. The case studies based on simulation and real observed data are conducted, which demonstrates the effectiveness of the proposed approach.

References

References
1.
NSTC Committee on Technology
,
2010
, “National Nanotechnology Initiative Signature Initiative: Sustainable Nanomanufacturing—Creating the Industries of the Future,” http://www.nano.gov/sites/default/files/pub_resource/nni_siginit_sustainable_mfr_revised_nov_2011.pdf
2.
He
,
J.
,
Ice
,
M.
,
Lavernia
,
E. J.
, and
Dallek
,
S.
,
2000
, “
Synthesis of Nanostructured WC-12 pct Co Coating Using Mechanical Milling and High Velocity Oxygen Fuel Thermal Spraying
,”
Metall. Mater. Trans. A
,
31
, pp.
541
553
.10.1007/s11661-000-0289-6
3.
Yamasaki
,
T.
,
Zheng
,
Y. J.
,
Ogino
,
Y.
,
Terasawa
,
M.
,
Mitamura
,
T.
, and
Fukami
,
T.
,
2003
, “
Formation of Metal-TiN/TiC Nanocomposite Powders by Mechanical Alloying and Their Consolidation
,”
Mater. Sci. Eng. A
,
350
, pp.
168
172
.10.1016/S0921-5093(02)00722-0
4.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
,
2004
, “
Study on Bulk Aluminum Matrix Nanocomposite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng. A
,
380
, pp.
378
383
.10.1016/j.msea.2004.03.073
5.
Camesasca
,
M.
,
Kaufman
,
M.
, and
Manas-Zloczower
,
I.
,
2006
, “
Quantifying Fluid Mixing With the Shannon Entropy
,”
Macromol. Theory Simul.
,
15
, pp.
595
607
.10.1002/mats.200600037
6.
Ganguly
,
P.
, and
Poole
,
W. J.
,
2002
, “
Characterization of Reinforcement Distribution Inhomogeneity in Metal Matrix Composites
,”
Mater. Sci. Eng. A
,
332
, pp.
301
310
.10.1016/S0921-5093(01)01757-9
7.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
2002
, “
Particle Distribution in Cast Metal Matrix Composites—Part I
,”
J. Mater. Process. Technol.
,
123
, pp.
251
257
.10.1016/S0924-0136(02)00098-5
8.
Hashim
,
J.
,
Looney
,
L.
, and
Hashmi
,
M. S. J.
,
2002
, “
Particle Distribution in Cast Metal Matrix Composites—Part II
,”
J. Mater. Process. Technol.
,
123
, pp.
258
263
.10.1016/S0924-0136(02)00099-7
9.
Tzamtzis
,
S.
,
Barekar
,
N. S.
,
Hari Babu
,
N.
,
Patel
,
J.
,
Dhindaw
,
B. K.
, and
Fan
,
Z.
,
2009
, “
Processing of Advanced Al/SiC Particulate Metal Matrix Composites Under Intensive Shearing—A Novel Rheo-Process
,”
Composites, Part A
,
40
, pp.
144
151
.10.1016/j.compositesa.2008.10.017
10.
Cressie
,
N. A. C.
,
1993
,
Statistics for Spatial Data
,
Rev. ed.
,
John Wiley & Sons
,
New York
.
11.
Diggle
,
P. J.
,
2003
,
Statistical Analysis of Spatial Point Patterns
,
2nd ed.
,
Oxford University Press
,
New York
.
12.
Zhou
,
Q.
,
Zhou
,
J.
,
De Cicco
,
M. P.
,
Zhou
,
S.
, and
Li.
,
X.
, “
Detecting Particle-Clustering in Metal Matrix Nanocomposites Using Microscopic Image Samples
,” Technometrics (to be published).
13.
Boal
,
A. K.
,
Ilhan
,
F.
,
DeRouchey
,
J. E.
,
Thurn-Albrecht
,
T.
,
Russell
,
T. P.
, and
Rotello
,
V. M.
,
2000
, “
Self-Assembly of Nanoparticles Into Structured Spherical and Network Aggregates
,”
Nature
,
404
, pp.
746
748
.10.1038/35008037
14.
Alabrudzinski
,
S.
,
Ekiel-Jezewska
,
M. L.
,
Chehata-Gomez
,
D.
, and
Kowalewski
,
T. A.
,
2009
, “
Particle Clusters Settling Under Gravity in a Viscous Fluid
,”
Phys. Fluids
,
21
, p.
073302
.10.1063/1.3168615
15.
Pratt
,
J. W.
,
1976
, “
F. Y. Edgeworth and R. A. Fisher on the Efficiency of Maximum Likelihood Estimation
,”
Ann. Stat.
,
4
(
3
), pp.
501
514
.10.1214/aos/1176343457
16.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
,
1977
, “
Maximum Likelihood From Incomplete Data via the EM Algorithm (With Discussion)
,”
J. R. Statist. Soc. B
,
39
, pp.
1
38
.
17.
Chan
,
K. S.
, and
Ledolter
J.
,
1995
, “
Monte Carlo EM Estimation for Time Series Models Involving Counts
,”
J. Am. Stat. Assoc.
,
90
(
429
), pp.
242
252
.10.1080/01621459.1995.10476508
18.
Booth
,
J. G.
,
Hobert
,
J. P.
, and
Jank
,
W.
,
2001
, “
A Survey of Monte Carlo Algorithms for Maximizing the Likelihood of a Two-Stage Hierarchical Model
,”
Stat. Model.
,
1
(
4
), pp.
333
349
.10.1191/147108201128249
19.
Wu
,
C. F. J.
,
1983
, “
On the Convergence Properties of the EM Algorithm
,”
Ann. Stat.
,
11
(
1
), pp.
95
103
.10.1214/aos/1176346060
20.
Booth
,
J. G.
, and
Hobert
,
J. P.
,
1999
, “
Maximizing Generalized Linear Mixed Model Likelihoods With an Automated Monte Carlo EM Algorithm
,”
J. R. Stat. Soc., Ser. B
,
61
, pp.
265
285
.10.1111/1467-9868.00176
21.
McLachlan
,
G.
, and
Krishnan
,
T.
,
1996
,
The EM Algorithm and Extensions
,
John Wiley & Sons
,
New York
.
22.
Banks
,
J.
,
Carson
,
J. S.
, II
,
Nelson
,
B. L.
, and
Nicol
,
D. M.
,
2004
,
Discrete-Event System Simulation
,
4th ed.
,
Prentice-Hall
,
New Jersey
, pp.
327
329
.
23.
Chan
,
J. S. K.
, and
Kuk
,
A. Y. C.
,
1997
, “
Maximum Likelihood Estimation for Probit-Linear Mixed Models With Correlated Random Effects
,”
Biometrics
,
53
, pp.
86
97
.10.2307/2533099
24.
Lange
,
K.
,
1995
, “
A Gradient Algorithm Locally Equivalent to the EM Algorithm
,”
J. R. Statist. Soc. B
,
57
, pp.
425
437
.
25.
McCulloch
,
C. E.
,
1994
, “
Maximum Likelihood Variance Components Estimation for Binary Data
,”
J. Am. Stat. Assoc.
,
89
, pp.
330
335
.10.1080/01621459.1994.10476474
26.
McCulloch
,
C. E.
,
1997
, “
Maximum Likelihood Algorithms for Generalized Linear Mixed Models
,”
J. Am. Stat. Assoc.
,
92
, pp.
162
170
.10.1080/01621459.1997.10473613
You do not currently have access to this content.