In this work, the minimization of warpage was investigated using the “moldflow” software and sequential simplex algorithm based on feedstock properties. Also, the sensitivity analysis was implemented to determine the degree of impact of each parameter on the warpage. This study is divided into two portions: experimental analysis and numerical analysis. First, for the experimental study, four kinds of feedstock with different alumina powder loadings were prepared to investigate the rheological properties. This investigation showed that the feedstock with 60 vol. % alumina powder was the optimum feedstock for the injection molding. Also, the results indicated that the viscosity of feedstock decreases by increasing both the shear rate and temperature. Next, the thermal conductivity of this feedstock was measured at different temperatures and it was found that the change of temperature can greatly influence the thermal conductivity of feedstock. In the numerical study, the injection molding parameters were divided into three categories. Based on the feedstock properties obtained form the first portion, and in order to minimize the warpage, the values of these parameters were sequentially acquired by moldflow and used in the sequential simplex algorithm for gradual convergence to the optimum level. To show the accuracy of numerical results, several samples were injection molded using the injection molding conditions for each vertex; results showed a close correlation between the values obtained by the numerical simulation and by the actual case. After determining the optimum parameter values, the sensitivity analysis was performed to identify the level of influence of each parameter on warpage. The obtained results showed that the most effective parameters on warpage are the mold temperature, packing pressure, and the holding time. Generally, it is demonstrated that the experimental and numerical analysis, performed via the moldflow software and sequential simplex algorithm, together with the sensitivity analysis can be useful in achieving success in the powder injection molding (PIM) technique.

References

References
1.
Ahn
,
S. J.
,
Park
,
S.
,
Lee
,
S.
,
Atre
,
S. V.
, and
German
,
R. M.
,
2009
, “
Effect of Powders and Binders on Material Properties and Molding Parameters in Iron and Stainless Steel Powder Injection Molding Process
,”
Powder Technol.
,
193
, pp.
162
169
.10.1016/j.powtec.2009.03.010
2.
Barriere
,
T.
,
Liu
,
B.
, and
Gelin
,
J. C.
,
2003
, “
Determination of the Optimal Process Parameters in Metal Injection Molding From Experiments and Numerical Modeling
,”
J. Mater. Process. Technol.
,
143-144
, pp.
636
644
.10.1016/S0924-0136(03)00473-4
3.
Kowalski
,
L.
,
Duszczyk
,
J.
, and
Katgerman
,
L.
,
1999
, “
Thermal Conductivity of Metal Powder-Polymer Feedstock for Powder Injection Moulding
,”
J. Mater. Sci.
,
34
, pp.
1
5
.10.1023/A:1004424401427
4.
Atre
,
S. V.
,
Park
,
S. J.
,
Zauner
,
R.
, and
German
,
R. M.
,
2007
, “
Process Simulation of Powder Injection Moulding: Identification of Significant Parameters During Mould Filling Phase
,”
Powder Metall.
,
50
(
1
), pp.
76
85
.10.1179/174329007X185607
5.
Park
,
S. J.
,
Ahn
,
S.
,
Kang
,
T. G.
,
Chung
,
S. T.
,
Kwon
,
Y. S.
,
Chung
,
S. H.
,
Kim
,
S. G.
,
Kim
,
S.
,
Atre
,
S. V.
,
Lee
,
S.
, and
German
,
R. M.
,
2010
, “
A Review of Computer Simulations in Powder Injection Molding
,”
Int. J. Powder Metall.
,
46
(
3
), pp.
37
46
.
6.
Zheng, Z., Xia, W., Zhou, Z., and Zhu, Q.,
2008
, “
Numerical Simulation of Tungsten Alloy in Powder Injection Molding Process
,”
Trans. Nonferrous Met. Soc. China
,
18
, pp.
1209
1215
.10.1016/S1003-6326(08)60206-X
7.
Kowalski
,
L.
, and
Duszczyk
,
J.
,
1999
, “
Specific Heat of Metal Powder-Polymer Feedstock for Powder Injection Molding
,”
J. Mater. Sci. Lett.
,
18
, pp.
1417
1420
.10.1023/A:1006623507854
8.
Jenni
,
M.
,
Schimmer
,
L.
,
Zauner
,
R.
,
Stampfl
,
J.
, and
Morris
,
J.
,
2008
, “
Quantitative Study of Powder Binder Separation of Feedstocks
,”
PIM Int.
,
2
(
4
), pp.
50
55
.
9.
Barriere
,
T.
,
Gelin
,
G. C.
, and
Liu
,
B.
,
2002
, “
Improving Mould Design and Injection Parameters in Metal Injection Moulding by Accurate 3D Finite Element Simulation
,”
J. Mater. Process. Technol.
,
125-126
, pp.
518
524
.10.1016/S0924-0136(02)00307-2
10.
Park
,
S. J.
, and
Kwon
,
T. H.
,
1998
, “
Optimal Cooling System Design for the Injection Molding Process
,”
Polym. Eng. Sci.
,
38
(
9
), pp.
1450
1462
.10.1002/pen.10316
11.
Kang
,
T. G.
,
Ahn
,
S.
,
Park
,
S. J.
,
Atre
,
S. V.
, and
German
,
R. M.
,
2009
, “
Mixing Simulation for Powder Injection Moulding Feedstock: Quantification and Sensitivity Analysis
,”
PIM Int.
,
3
(
2
), pp.
59
62
.
12.
Karatas
,
C.
,
Sozen
,
A.
,
Arcaklioglu
,
E.
, and
Erguney
,
S.
,
2008
, “
Investigation of Mouldability for Feedstocks Used Powder Injection Moulding
,”
Mater. Des.
,
29
, pp.
1713
1724
.10.1016/j.matdes.2008.03.021
13.
Tseng
,
W. J.
,
1998
, “
Statistical Analysis of Process Parameters Influencing Dimensional Control in Ceramic Injection Molding
,”
J. Mater. Process. Technol.
,
79
, pp.
242
250
.10.1016/S0924-0136(98)00019-3
14.
Kwon
,
T. H.
, and
Ahn
,
S. Y.
,
1995
, “
Slip Characterization of Powder-Binder Mixtures and its Significance in the Filling Process Analysis of Powder Injection Molding
,”
Powder Technol.
,
85
(
1
), pp.
45
55
.10.1016/0032-5910(95)03001-P
15.
Park
,
S. J.
, and
Kwon
,
T. H.
,
1996
, “
Sensitivity Analysis Formulation for Three-Dimensional Conduction Heat Transfer With Complex Geometries Using a Boundary Element Method
,”
Int. J. Numer. Methods Eng.
,
39
, pp.
2837
2862
.10.1002/(SICI)1097-0207(19960830)39:16<2837::AID-NME981>3.0.CO;2-4
16.
Liu
,
Y.,
Li
,
X.,
Huang
,
Y.,
Wei
,
S.,
and
Zeng
,
G.,
2008
, “
Comparison of Rheological Analytic Model With Numerical Simulation in Powder Injection Molding Filling Process
,”
J. Central South Univ. Technol.
,
15
(
1
), pp.
51
56
.10.1007/s11771-008-0313-3
17.
Yarlagadda
,
P. K. D. V.
,
2002
, “
Development of an Integrated Neural Network System for Prediction of Process Parameters in Metal Injection Moulding
,”
J. Mater. Process. Technol.
,
130–131
, pp.
315
320
.10.1016/S0924-0136(02)00738-0
18.
Nor
,
N. H. M.
,
Muhamad
,
N.
,
Ismail
,
M. H.
,
Jamaludin
,
K. R.
,
Ahmad
,
S.
, and
Ibrahim
,
M. H. I.
,
2009
, “
Flow Behaviour to Determine the Defects of Green Part in Metal Injection Molding
,”
Int. J. Mech. Mater. Eng.
,
4
(
1
), pp.
70
75
.
19.
Berginc
,
B.
,
Brezocnik
,
M.
,
Kampus
,
Z.
, and
Sustarsic
,
B.
,
2009
, “
A Numerical Simulation of Metal Injection Moulding
,”
Mater. Technol.
,
43
(
1
), pp.
43
48
.
20.
Urval
,
R.
,
Lee
,
S.
,
Atre
,
S. V.
,
Park
,
S.-J.
, and
German
,
R. M.
,
2008
, “
Optimization of Process Conditions in Powder Injection Moulding of Microsystem Components Using a Robust Design Method: Part I. Primary Design Parameters
,”
Powder Metall.
,
51
(
2
), pp.
133
142
.10.1179/174329008X284796
21.
Hwang
,
C. J.
, and
Kwon
,
T. H.
,
2002
, “
A Full 3D Finite Element Analysis of the Powder Injection Molding Filling Process Including Slip Phenomena
,”
Polym. Eng. Sci.
,
42
(
1
), pp.
33
50
.10.1002/pen.10926
22.
Mori
,
K.
,
Osakada
,
K.
, and
Takaoka
,
S.
,
1996
, “
Simplified Three-Dimensional Simulation of Non-Isothermal Filling in Metal Injection Moulding by the Finite Element Method
,”
Eng. Comput.
,
13
(
2
), pp.
111
121
.10.1108/02644409610114495
23.
Lam
Y. C.
,
Chen
,
X.
,
Tan
,
K. W.
,
Chai
,
J. C.
, and
Yu
,
S. C. M.
,
2004
, “
Numerical Investigation of Particle Migration in Poiseuille Flow of Composite System
,”
Compos. Sci. Technol.
,
64
, pp.
1001
1010
.10.1016/j.compscitech.2003.08.005
24.
Stangle
,
G. C.
, and
Aksay
,
I. A.
,
1990
, “
Simultaneous Momentum, Heat and Mass Transfer With Chemical Reaction in a Disordered Porous Medium: Application to Binder Removal From a Ceramic Green Body
,”
Chem. Eng. Sci.
,
45
(
7
), pp.
1719
1731
.10.1016/0009-2509(90)87050-3
25.
Mater
,
S. A.
,
Edirisinghe
,
M. J.
,
Evans
,
J. R. G.
,
Twizell
,
E. H.
, and
Song
,
J. H.
,
1995
, “
Modelling the Removal of Organic Vehicle From Ceramic or Metal Mouldings: The Effect of Gas Permeation on the Incidence of Defects
,”
J. Mater. Sci.
,
30
, pp.
3805
3810
.10.1007/BF01153938
26.
Lewis
,
J. A.
, and
Galler
,
M. A.
,
1996
, “
Computer Simulations of Binder Removal From 2-D and 3-D Model Particulate Bodies
,”
J. Am. Ceram. Soc.
,
79
(
5
), pp.
1377
1388
.10.1111/j.1151-2916.1996.tb08599.x
27.
Lam
,
Y. C.
,
Yu
,
S. C. M.
,
Tam
,
K. C.
, and
Shengjie
,
Y.
,
2000
, “
Simulation of Polymer Removal From a Powder Injection Molding Compact by Thermal Debinding
,”
Metall. Mater. Trans. A
,
31
, pp.
2597
2606
.10.1007/s11661-000-0204-1
28.
Maximenko
,
A.
, and
Biest
,
O. V. D.
,
1998
, “
Finite Element Modelling of Binder Removal From Ceramic Mouldings
,”
J. Eur. Ceram. Soc.
,
18
(
8
), pp.
1001
1009
.10.1016/S0955-2219(97)00193-3
29.
Olevsky
,
E.
,
Skorohod
,
V.
,
Bohsmann
,
M.
, and
Petzow
,
G.
,
1995
, “
Computer Modeling of Sintering With Phase Transformations
,”
Sintering and Materials
,
L.
Nan
, ed.,
International Academic Publishers
,
Wuhan, China
, pp.
9
14
.
30.
Tikare
,
V.
,
Braginsky
,
M. V.
,
Olevsky
,
E. A.
, and
Dehoff
,
R. T.
,
2000
, “
A Combined Statistical-Microstructural Model for Simulation of Sintering
,”
Sintering Science and Technology
,
R. M.
German
,
G. L.
Messing
, and
R. G.
Cornwall
, eds.,
Pennsylvania State University
,
State College, PA
, pp.
405
409
.
31.
Riedel
,
H.
,
Meyer
,
D.
,
Svoboda
,
J.
, and
Zipse
,
H.
,
1994
, “
Numerical Simulation of Die Pressing and Sintering—Development of Constitutive Equations
,”
Int. J. Refract. Metals Hard Mater.
,
12
(
2
), pp.
55
60
.10.1016/0263-4368(93)90016-9
32.
Tikare
,
V.
,
Olevsky
,
E. A.
, and
Braginsky
,
M. V.
,
2001
, “
Combined Macro-Meso Scale Modeling of Sintering. Part II, Mesoscale Simulations
,”
Recent Developments in Computer Modeling of Powder Metallurgy Processes
,
A.
Zavaliangos
, and
A.
Laptev
, eds.,
ISO Press
,
Ohmsha, Sweden
, pp.
94
104
.
33.
Bouvard
,
D.
, and
Meister
,
T.
,
2000
, “
Modeling Bulk Viscosity of Powder Aggregate During Sintering
,”
Modell. Simul. Mater. Sci. Eng.
,
8
(
3
), pp.
377
388
.10.1088/0965-0393/8/3/316
34.
Kwon
,
Y. S.
,
Wu
,
Y.
,
Suri
,
P.
, and
German
,
R. M.
,
2004
, “
Simulation of the Sintering Densification and Shrinkage Behavior of Powder-Injection-Molded 17-4 PH Stainless Steel
,”
Metall. Mater. Trans. A
,
35
, pp.
257
263
.10.1007/s11661-004-0126-4
35.
Tseng
,
W. J.
, and
Chiang
,
D.
,
1998
, “
Influence of Molding Variables on Defect Formation and Mechanical Strength of Injection-Molded Ceramics
,”
J. Mater. Process. Technol.
,
84
, pp.
229
235
.10.1016/S0924-0136(98)00225-8
36.
Thomas
,
M. S.
, and
Evans
,
J. R. G.
,
1988
, “
Non-Uniform Shrinkage in Ceramic Injection-Moulding
,”
Br. Ceram. Trans. J.
,
87
, pp.
22
26
.
37.
Zhang
,
J. G.
,
Edirisinghe
,
M. J.
, and
Evans
,
J. R. G.
,
1989
, “
A Catalogue of Ceramic Injection Moulding Defects and Their Causes
,”
Ind. Ceram.
,
9
(
2
), pp.
72
82
.
38.
Liu
,
Z. Y.
,
Loh
,
N. H.
,
Tor
,
S. B.
, and
Khor
,
K. A.
,
2002
, “
Characterization of Powder Injection Molding Feedstock
,”
Mater. Charact.
,
49
, pp.
313
320
.10.1016/S1044-5803(02)00282-6
39.
Huang
,
B.
,
Liang
,
S.
, and
Qu
,
X.
,
2003
, “
The Rheology of Metal Injection Molding
,”
J. Mater. Process. Technol.
,
137
, pp.
132
137
.10.1016/S0924-0136(02)01100-7
40.
Reddy
,
J. J.
,
Ravi
,
N.
, and
Vijayakumar
,
M.
,
2000
, “
A Simple Model for Viscosity of Powder Injection Moulding Mixes With Binder Content Above Powder Critical Binder Volume Concentration
,”
J. Eur. Ceram. Soc.
,
20
, pp.
2183
2190
.10.1016/S0955-2219(00)00096-0
41.
Huang
,
B.
, and
Qu
,
X.
,
1999
, “
Viscosity and Melt Rheology of Metal Injection Molding Feedstocks
,”
Powder Metall.
,
42
, pp.
86
90
.10.1179/003258999665459
42.
Kurtaran
,
H.
,
Ozcelik
,
B.
, and
Erzurumlu
,
T.
,
2005
, “
Warpage Optimization of a Bus Ceiling Lamp Base Using Neural Network Model and Genetic Algorithm
,”
J. Mater. Process. Technol.
,
169
, pp.
314
319
.10.1016/j.jmatprotec.2005.03.013
43.
Ozcelik
,
B.
, and
Erzurumlu
,
T.
,
2006
, “
Comparison of the Warpage Optimization in the Plastic Injection Molding Using ANOV, Neural Network Model and Genetic Algorithm
,”
J. Mater. Process. Technol.
,
171
, pp.
437
445
.10.1016/j.jmatprotec.2005.04.120
44.
Chen
,
R. S.
,
Lee
,
H. H.
, and
Yu
,
C. Y.
,
1997
, “
Application of Taguchi's Method on the Optimal Process Design of an Injection Molded PC/PBT Automobile Bumper
,”
Compos. Struct.
,
39
, pp.
209
214
.10.1016/S0263-8223(97)00110-4
45.
Tuncay
,
E.
, and
Babur
,
O.
,
2006
, “
Minimization of Warpage and Sink Index in an Injection-Molded Thermoplastic Parts Using Taguchi Optimization Method
,”
Mater. Des.
,
27
, pp.
853
861
.10.1016/j.matdes.2005.03.017
46.
Oktem
,
H.
,
Tuncay
,
E.
, and
Ibrahim
,
U.
,
2007
, “
Application of Taguchi Optimization Technique in Determining Plastic Injection Molding Process Parameters for a Thin Shell Part
,”
Mater. Des.
,
28
, pp.
1271
1278
.10.1016/j.matdes.2005.12.013
47.
Kurtaran
,
H.
, and
Erzurumlu
,
T.
,
2006
, “
Effective Warpage Optimization of Thin Shell Plastic Parts Using Response Surface Methodology and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
27
, pp.
468
72
.10.1007/s00170-004-2321-2
48.
Li
,
X.
,
Hu
,
B.
, and
Du
,
R.
,
2008
, “
Predicting the Parts Weight in Plastic Injection Molding Using Least Squares Support Vector Regression
,”
IEEE Trans. Syst., Man, Cybern. Part C Appl. Rev.
,
38
(
6
), pp.
827
833
.10.1109/TSMCC.2008.2001707
49.
Lin
,
J.
, and
Lian
,
R. J.
,
2010
, “
Self-Organizing Fuzzy Controller for Gas-Assisted Injection Molding Combination Systems
,”
IEEE Trans. Control Syst. Technol.
,
18
(
6
), pp.
1413
1421
.10.1109/TCST.2009.2037973
50.
Li
,
E.
,
Jia
,
L.
, and
Yu
,
J.
,
2002
, “
A Genetic Neural Fuzzy System-Based Quality Prediction Model for Injection Process
,”
Comput. Chem. Eng.
,
26
, pp.
1253
1263
.10.1016/S0098-1354(02)00092-3
51.
Farshi
,
B.
,
Gheshmi
,
S.
, and
Miandoabchi
,
E.
,
2011
, “
Optimization of Injection Molding Process Parameters Using Sequential Simplex Algorithm
,”
Mater. Des.
,
32
, pp.
414
423
.10.1016/j.matdes.2010.06.043
52.
Reddy
,
B. S.
,
Kumar
,
J. S.
,
Reddy
,
V. K.
, and
Padmanabhan
,
G.
,
2009
, “
Application of Soft Computing for the Prediction of Warpage of Plastic Injection Molded Parts
,”
J. Eng. Sci. Technol. Rev.
,
2
(
1
), pp.
56
62
.
53.
Huang
,
M. C.
, and
Tai
,
C. C.
,
2001
, “
The Effective Factors in the Warpage Problem of an Injection-Molded Part With a Thin Shell Feature
,”
J. Mater. Process. Technol.
,
110
, pp.
1
9
.10.1016/S0924-0136(00)00649-X
54.
Tseng
,
W. J.
, and
Liu
,
D. M.
, “
Effect of Processing Variables on Warping Behaviours of Injection-Moulded Ceramics
,”
Ceram. Int.
,
24
, pp.
125
133
.10.1016/S0272-8842(97)00041-2
55.
Tseng
,
W. J.
,
2000
, “
Warping Evolution of Injection-Molded Ceramics
,”
J. Mater. Process. Technol.
,
102
, pp.
14
18
.10.1016/S0924-0136(99)00455-0
56.
Wei
,
W. C. J.
,
Wu
,
R. Y.
, and
Ho
,
S. J.
,
2000
, “
Effects of Pressure Parameters on Alumina Made by Powder Injection Moulding
,”
J. Eur. Ceram. Soc.
,
20
, pp.
1301
1310
.10.1016/S0955-2219(99)00295-2
57.
Krug
,
S.
,
Evans
,
J. R. G.
, and
ter Maat
,
J. H. H.
,
2000
, “
Residual Stresses and Cracking in Large Ceramic Injection Mouldings Subjected to Different Solidification Schedules
,”
J. Eur. Ceram. Soc.
,
20
, pp.
2535
2541
.10.1016/S0955-2219(00)00120-5
58.
Zhang
,
T.
,
Blackburn
,
S.
,
Bridgewater
,
J.
,
1997
, “
The Orientation of Binders and Particles During Ceramic Injection Moulding
,”
J. Eur. Ceram. Soc.
,
17
, pp.
101
108
.10.1016/S0955-2219(96)00070-2
59.
Heaney
,
D. F.
, and
Spina
,
R.
,
2009
, “
Dimentional Variation in MIM Component
,”
Arabian J. Sci. Eng.
,
34
(
1C
), pp.
147
157
.
60.
Hunt
,
K. N.
,
Evans
,
J. R. G.
,
Mills
,
N. J.
, and
Woodthorpe
,
J.
,
1991
, “
Computer Modeling of the Origin of Defects in Ceramic Injection Moulding IV. Residual Stresses
,”
J. Mater. Sci.
,
26
, pp.
5229
5238
.10.1007/BF01143217
61.
Butr-Indra
,
B.
,
Kasinrerkb
,
W.
, and
Tayapiwatana
,
C.
,
2009
, “
Sequential Simplex Optimization of Recombinant Biotinylated Surviving Production by Escherichia Coli Using Mineral Supplementation
,”
Biochem. Eng. J.
,
46
, pp.
115
120
.10.1016/j.bej.2009.04.015
62.
Walters
,
F. H.
,
Morgan
,
S. L.
,
Paker
,
L. R.
, and
Deming
,
S. N.
,
1991
,
Sequential Simplex Optimization
,
CRC Press
,
Boca Raton, FL
.
63.
German
,
R. M.
, and
Bose
,
A.
,
1997
,
Injection Molding of Metals and Ceramics
,
MPIF
,
New Jersey
.
64.
German
,
R. M.
,
1994
, “
Homogeneity Effects on Feedstock Viscosity in Powder Injection Molding
,”
J. Am. Ceram. Soc.
,
77
(
1
), pp.
283
285
.10.1111/j.1151-2916.1994.tb06992.x
You do not currently have access to this content.