In servo systems, the dynamic characteristics may not only differ between axes but may also vary with moving directions for a single axis. The direction dependent characteristics would result in additional tracking or positioning error and degrade the performance of the system. In this paper, relay feedback tests are successfully applied to identify the dynamic characteristics in servo systems. A time-domain method is used to analyze the relay feedback other than the conventional describing function (DF) method. The time-domain method utilizes the same oscillation parameters (oscillation amplitude and half period) as the DF method for system identification. However, the time-domain method takes several advantages: First, the direction dependent characteristics of the system can be properly revealed; second, no approximation is made in this method, so that the exact expressions of the amplitudes and the periods of the limit cycles under relay feedback can be derived. A feedforward compensator is then designed using the estimated values of the system parameters. Simulation results show that the identification results through the time-domain method are more accurate than the DF method and are more robust under different relay parameters. Real time experiments show that the feedforward compensator designed by the proposed method compensates disturbances related to the direction and hence improves the tracking and positioning performance of the servo system.

References

1.
Antoni
,
N.
,
Ligier
,
J.
,
Saffré
,
P.
, and
Pastor
,
J.
,
2007
, “
Asymmetric Friction: Modelling and Experiments
,”
Int. J. Eng. Sci.
,
45
(
2–8
), pp.
587
600
.10.1016/j.ijengsci.2007.04.014
2.
Zhang
,
H.
, and
Landers
,
R.
,
2007
, “
Precision Motion Control Methodology for Complex Contours
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1060
1068
.10.1115/1.2769728
3.
Åström
,
K.
, and
Hägglund
,
T.
,
1988
,
Automatic Tuning of PID Controllers
,
Instrument Society of America, Research Triangle Park
,
NC
.
4.
Åström
,
K.
,
Hägglund
,
T.
,
Hang
,
C.
, and
Ho
,
W.
,
1993
, “
Automatic Tuning and Adaptation for PID Controllers—A Survey
,”
Control Eng. Pract.
,
1
(
4
), pp.
699
714
.10.1016/0967-0661(93)91394-C
5.
Åstrom
,
K.
,
Lee
,
T.
,
Tan
,
K.
, and
Johansson
,
K.
,
1995
, “
Recent Advances in Relay Feedback Methods—A Survey
,”
IEEE International Conference on Systems
,
Man and Cybernetics. Intelligent Systems for the 21st Century
,
IEEE
, Vol. 3, pp.
2616
2621
.10.1109/ICSMC.1995.538177
6.
Luyben
,
W.
,
1987
, “
Derivation of Transfer Functions for Highly Nonlinear Distillation Columns
,”
Ind. Eng. Chem. Res.
,
26
(
12
), pp.
2490
2495
.10.1021/ie00072a017
7.
Tan
,
K.
,
Lee
,
T.
,
Huang
,
S.
, and
Jiang
,
X.
,
2001
, “
Friction Modeling and Adaptive Compensation Using a Relay Feedback Approach
,”
IEEE Trans. Ind. Electron.
,
48
(
1
), pp.
169
176
.10.1109/41.904577
8.
Chen
,
S.
,
Tan
,
K.
, and
Huang
,
S.
,
2009
, “
Friction Modeling and Compensation of Servomechanical Systems With Dual-Relay Feedback Approach
,”
IEEE Trans. Control Syst. Technol.
,
17
(
6
), pp.
1295
1305
.10.1109/TCST.2008.2006905
9.
Shen
,
S.
,
Wu
,
J.
, and
Yu
,
C.
,
1996
, “
Use of Biased-Relay Feedback for System Identification
,”
AIChE J.
,
42
(
4
), pp.
1174
1180
.10.1002/aic.690420431
10.
Shen
,
S. H.
,
Yu
,
H. D.
, and
Yu
,
C. C.
,
1996
, “
Use of Saturation-Relay Feedback for Autotune Identification
,”
Chem. Eng. Sci.
,
51
(
8
), pp.
1187
1198
.10.1016/0009-2509(95)00371-1
11.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
12.
Wang
,
Q.
,
Hang
,
C.
, and
Zou
,
B.
,
1997
, “
Low-Order Modeling From Relay Feedback
,”
Ind. Eng. Chem. Res.
,
36
(
2
), pp.
375
381
.10.1021/ie960412+
13.
Thyagarajan
,
T.
, and
Yu
,
C.
,
2003
, “
Improved Autotuning Using the Shape Factor From Relay Feedback
,”
Ind. Eng. Chem. Res.
,
42
(
20
), pp.
4425
4440
.10.1021/ie011006f
14.
Yu
,
C.
,
2006
,
Autotuning of PID Controllers: A Relay Feedback Approach
,
Springer-Verlag, London
.
15.
Pu
,
D.
,
Wu
,
J.
,
Xiong
,
Z.
,
Sheng
,
X.
, and
Ding
,
H.
,
2010
, “
Nonlinear Analysis and Parameters Identification of Servo Mechanism With Relay Feedback
,”
Assem. Autom.
,
30
(
3
), pp.
221
227
.10.1108/01445151011061118
16.
Wu
,
J.
,
Liu
,
J.
,
Xiong
,
Z.
, and
Ding
,
H.
,
2011
, “
A Relay-Based Method for Servo Performance Improvement
,”
Mechatronics
,
21
(
6
), pp.
1076
1086
.10.1016/j.mechatronics.2011.06.001
17.
Chen
,
S.
,
Tan
,
K.
,
Huang
,
S.
, and
Teo
,
C.
,
2010
, “
Modeling and Compensation of Ripples and Friction in Permanent-Magnet Linear Motor Using a Hysteretic Relay
,”
IEEE/ASME Trans. Mechatron.
,
15
(
4
), pp.
586
594
.10.1109/TMECH.2009.2030794
18.
Chen
,
S.
,
Tan
,
K.
, and
Huang
,
S.
,
2012
, “
Identification of Coulomb Friction-Impeded Systems With a Triple-Relay Feedback Apparatus
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
726
737
.10.1109/TCST.2011.2143413
You do not currently have access to this content.