Materials often behave in a complicated manner involving deeply coupled effects among stress/stain, temperature, and microstructure during a machining process. This paper is concerned with prediction of the phase change effect on orthogonal cutting of American Iron and Steel Institute (AISI) 1045 steel based on a true metallo-thermomechanical coupled analysis. A metallo-thermomechanical coupled material model is developed and a finite element model (FEM) is used to solve the evolution of phase constituents, cutting temperature, chip morphology, and cutting force simultaneously using abaqus. The model validity is assessed using the experimental data for orthogonal cutting of AISI 1045 steel under various conditions, with cutting speeds ranging from 198 to 879 m/min, feeds from 0.1 to 0.3 mm, and tool rake angles from −7 deg to 5 deg. A good agreement is achieved in chip formation, cutting force, and cutting temperature between the model predictions and the experimental data.

References

1.
Chou
,
Y. K.
, and
Evans
,
C. J.
, 1999, “
White Layers and Thermal Modeling of Hard Turned Surfaces
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1863
1881
.
2.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M’Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
, 2011, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann.
,
60
(
2
), pp.
603
626
.
3.
Umbrello
,
D.
,
Outeiro
,
J. C.
,
M’Saoubi
,
R.
,
Jayal
,
A. D.
, and
Jawahir
,
I. S.
, 2010, “
A Numerical Model Incorporating the Microstructure Alteration for Predicting Residual Stresses in Hard Machining of AISI 52100 Steel
,”
CIRP Ann.
,
59
(
1
), pp.
113
116
.
4.
Shi
,
B.
, and
Attia
,
H.
, 2010, “
Current Status and Future Direction in the Numerical Modeling and Simulation of Machining Processes: A Critical Literature Review
,”
Mach. Sci. Technol.
,
14
(
2
), pp.
149
188
.
5.
Inoue
,
T.
, 2002, “
Metallo-Thermo-Mechanics—Application to Quenching
,”
Handbook of Residual Stress and Deformation of Steel
,
G. E.
Totten
,
M. A. H.
Howes
, and
T.
Inoue
, eds.,
ASM International, Materials Park
,
OH
, pp.
296
311
.
6.
Denis
,
S.
,
Archambault
,
P.
,
Gautier
,
E.
,
Simon
,
A.
, and
Beck
,
G.
, 2002, “
Prediction of Residual Stress and Distortion of Ferrous and Non-Ferrous Metals: Current Status and Future Developments
,”
J. Mater. Eng. Perform.
,
11
(
1
), pp.
92
102
.
7.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
, 2009, “
Predictive Modeling and Experimental Results for Residual Stresses in Laser Hardening of AISI 4140 Steel by a High Power Diode Laser
,”
Surf. Coat. Technol.
,
203
, pp.
2003
2012
.
8.
Ashby
,
M. F.
, and
Easterling
,
K. E.
, 1984, “
The Transformation Hardening of Steel Surfaces by Laser Beams—I. Hypo-Eutectoid Steels
,”
Acta Metall.
,
32
(
11
), pp.
1935
1937
.
9.
Skvarenina
,
S.
, and
Shin
,
Y. C.
, 2006, “
Predictive Modeling and Experimental Results for Laser Hardening of AISI 1536 Steel With Complex Geometric Features by a High Power Diode Laser
,”
Surf. Coatings Technol.
,
201
, pp.
2256
2269
.
10.
Patwa
,
R.
, and
Shin
,
Y. C.
, 2007, “
Predictive Modeling of Laser Hardening of AISI5150H Steels
,”
Int. J. Mach. Tools Manufacture
,
47
(
2
), pp.
307
320
.
11.
Mahdi
,
M.
, and
Zhang
,
L.
, 1998, “
Applied Mechanics in Grinding—VI. Residual Stresses and Surface Hardening by Coupled Thermo-Plasticity and Phase Transformation
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1289
1304
.
12.
Mahdi
,
M.
, and
Zhang
,
L.
, 1999, “
Applied Mechanics in Grinding. Part 7: Residual Stresses Induced by the Full Coupling of Mechanical Deformation, Thermal Deformation and Phase Transformation
,”
Int. J. Mach. Tools Manuf.
,
39
(
8
), pp.
1285
1298
.
13.
Umbrello
,
D.
, and
Filice
,
L.
, 2009, “
Improving Surface Integrity in Orthogonal Machining of Hardened AISI 52100 Steel by Modeling White and Dark Layers Formation
,”
CIRP Ann.
,
58
(
1
), pp.
73
76
.
14.
Ramesh
,
A.
, and
Melkote
,
S. N.
, 2008, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
, pp.
402
414
.
15.
Burns
,
T. J.
,
Mates
,
S. P.
,
Rhorer
,
R. L.
,
Whitenton
,
E. P.
, and
Basak
,
D.
, 2011, “
Dynamic Properties for Modeling and Simulation of Machining: Effect of Pearlite to Austenite Phase Transition on Flow Stress in AISI 1075 Steel
,”
Mach. Sci. Technol.
,
15
, pp.
1
20
.
16.
Burns
,
T. J.
,
Mates
,
S. P.
,
Rhorer
,
R. L.
,
Whitenton
,
E. P.
, and
Basak
,
D.
, “
Effect on Flow Stress of a Rapid Phase Transition in AISI 1045 Steel
,” Proceedings of the 2011
ASME
International Manufacturing Science and Engineering Conference, Paper No. MSEC2011-50229.
17.
Ivester
,
R. W.
,
Kennedy
,
M.
,
Davies
,
M.
,
Stevenson
,
R.
,
Thiele
,
J.
,
Furness
,
R.
, and
Athavale
,
S.
, 2000, “
Assessment of Machining Models: Progress Report
,”
Mach. Sci. Technol.
,
4
(
3
), pp.
511
538
.
18.
Lakhkar
,
R. S.
,
Shin
,
Y. C.
, and
Krane
,
M. J. M.
, 2008, “
Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel
,”
Mater. Sci. Eng. A
,
480
, pp.
209
217
.
19.
Lee
,
C.-H.
, and
Chang
,
K.-H.
, 2009, “
Finite Element Simulation of the Residual Stresses in High Strength Carbon Steel Butt Weld Incorporating Solid-State Phase Transformation
,”
Comput. Mater. Sci.
,
46
(
4
), pp.
1014
1022
.
20.
Lee
,
C.-H.
, and
Chang
,
K.-H.
, 2011, “
Prediction of Residual Stresses in High Strength Carbon Steel Pipe Weld Considering Solid-State Phase Transformation Effects
,”
Comput. Struct.
,
89
(
1–2
), pp.
256
265
.
21.
Deng
,
D.
, 2009, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
.
22.
Simsir
,
C.
, and
Gür
,
C. H.
, 2008, “
3D FEM Simulation of Steel Quenching and Investigation of the Effect of Asymmetric Geometry on Residual Stress Distribution
,”
J. Mater. Process. Technol.
,
207
(
1–3
), pp.
211
221
.
23.
Bailey
,
N. S.
, and
Shin
,
Y. C.
, “
Optimization of Laser Hardening Processes for Industrial Parts With Complex Geometry via Predictive Modeling
,” Proceedings of the 2009
ASME
International Manufacturing Science and Engineering Conference (
MSEC2009
),
American Society of Mechanical Engineers
, pp.
647
656
.
24.
Han
,
S.
,
Melkote
,
S. N.
,
Haluska
,
M. S.
, and
Watkins
,
T. R.
, 2008, “
White Layer Formation Due to Phase Transformation in Orthogonal Machining of AISI 1045 Annealed Steel
,”
Mater. Sci. Eng. A
,
488
, pp.
195
204
.
25.
Lee
,
S.-J.
,
Pavlina
,
E. J.
, and
Van Tyne
,
C. J.
, 2010, “
Kinetics Modeling of Austenite Decomposition for an End-Quenched 1045 Steel
,”
Mater. Sci. Eng. A
,
527
(
13–14
), pp.
3186
3194
.
26.
Bhadeshia
,
H. K. D. H.
, 2002, “
Material Factors
,”
Handbook of Residual Stress and Deformation of Steel
,
G. E.
Totten
,
M. A. H.
Howes
, and
T.
Inoue
, eds.,
ASM International, Materials Park
,
OH
, pp.
3
10
.
27.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
, 2007, “
Characterization of Machining of AISI 1045 Steel Over a Wide Range of Cutting Speeds. Part 2: Evaluation of Flow Stress Models and Interface Friction Distribution Schemes
,”
Proc. Inst. Mech. Eng., Part B
,
221
, pp.
917
926
.
28.
Davis
,
J. R.
, ed., 1996,
Cast Irons (ASM Specialty Handbook)
,
ASM International, Materials Park
,
OH
.
29.
Sharma
,
V. K.
,
Breyer
,
N. N.
,
Abe
,
N.
, and
Schwartz
,
L. H.
, 1974, “
Effects of Plastic Deformation on the Density of a Medium Carbon Martensite
,”
Scr. Metall.
,
8
(
6
), pp.
699
701
.
30.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
, 2002, “
Material Behaviour in Conditions Similar to Metal Cutting: Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.
31.
Iwamoto
,
T.
,
Tsuta
,
T.
, and
Tomita
,
Y.
, 1998, “
Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in Trip Steels and Modelling of Transformation Kinetics
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
173
182
.
32.
Iwamoto
,
T.
, 2004, “
Multiscale Computational Simulation of Deformation Behavior of TRIP Steel With Growth of Martensitic Particles in Unit Cell by Asymptotic Homogenization Method
,”
Int. J. Plast.
,
20
(
4–5
), pp.
841
869
.
33.
Simsir
,
C.
, and
Gür
,
C. H.
, 2008, “
A FEM Based Framework for Simulation of Thermal Treatments: Application to Steel Quenching
,”
Comput. Mater. Sci.
,
44
(
2
), pp.
588
600
.
34.
Ferro
,
P.
,
Porzner
,
H.
,
Tiziani
,
A.
, and
Bonollo
,
F.
, 2006, “
The Influence of Phase Transformations on Residual Stresses Induced by the Welding Process-3D and 2D Numerical Models
,”
Modell. Simul. Mater. Sci. Eng.
,
14
, pp.
117
136
.
35.
Yaghi
,
A. H.
,
Hyde
,
T. H.
,
Becker
,
A. A.
, and
Sun
,
W.
, 2008, “
Finite Element Simulation of Welding and Residual Stresses in a P91 Steel Pipe Incorporating Solid-State Phase Transformation and Post-Weld Heat Treatment
,”
J. Strain Anal. Eng. Des.
,
43
, pp.
275
293
.
36.
Rammerstorfer
,
F. G.
,
Fischer
,
D. F.
,
Mitter
,
W.
,
Bathe
,
K. J.
, and
Snyder
,
M. D.
, 1981, “
On Thermo-Elastic-Plastic Analysis of Heat-Treatment Processes Including Creep and Phase Changes
,”
Comput. Struct.
,
13
, pp.
771
779
.
37.
abaqus
, 2010,
abaqus User’s Manual, Version 6.10
,
Hibbitt, Karlsson & Sorensen, Inc.
,
Pawtucket, RI
.
38.
Lalwani
,
D. I.
,
Mehta
,
N. K.
, and
Jain
,
P. K.
, 2009, “
Extension of Oxley’s Predictive Machining Theory for Johnson and Cook Flow Stress Model
,”
J. Mater. Process. Technol.
,
209
(
12–13
), pp.
5305
5312
.
39.
Karpat
,
Y.
, and
Özel
,
T.
, 2006, “
Predictive Analytical and Thermal Modeling of Orthogonal Cutting Process—Part I: Predictions of Tool Forces, Stresses, and Temperature Distributions
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
435
444
.
40.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
, 2007, “
Characterization of Machining of AISI 1045 Steel Over a Wide Range of Cutting Speeds. Part 1: Investigation of Contact Phenomena
,”
Proc. Inst. Mech. Eng., Part B
,
221
, pp.
909
916
.
41.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
, 2011, “
Modeling of Grain Refinement in Aluminum and Copper Subjected to Cutting
,”
Comput. Mater. Sci.
,
50
(
10
), pp.
3016
3025
.
42.
Ding
,
H.
, and
Shin
,
Y. C.
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Commercially Pure Titanium
,” Proceedings of the 2011
ASME
International Manufacturing Science and Engineering Conference, Paper No. MSEC2011-50220.
43.
Ding
,
H.
,
Shen
,
N.
, and
Shin
,
Y. C.
, 2012, “
Thermal and Mechanical Modeling Analysis of Laser-Assisted Micro-Milling of Difficult-to-Machine Alloys
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
601
613
.
44.
Özel
,
T.
, 2006, “
The Influence of Friction Models on Finite Element Simulations of Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
518
530
.
45.
Ramesh
,
A.
,
Melkote
,
S. N.
,
Allard
,
L. F.
,
Riester
,
L.
, and
Watkins
,
T. R.
, 2005, “
Analysis of White Layers Formed in Hard Turning of AISI 52100 Steel
,”
Mater. Sci. Eng. A
,
390
(
1–2
), pp.
88
97
.
46.
Oxley
,
P. L. B.
, 1989,
The Mechanics of Machining: An Analytical Approach to Assessing Machinability
,
Ellis Horwood Ltd.
,
England
.
You do not currently have access to this content.