Growing interest in sustainability is driving manufacturers to improve the environmental performance of their products and processes. The production of steel and steel products consumes materials and energy resources, and creates wastes and emissions. Industry leaders and policy makers have identified iron/steel and metal casting as areas of concern from an environmental perspective. By evaluating steel product manufacturing processes commonly employed in the heavy equipment industry, environmental impacts can be mitigated during product and process design. A process modeling approach that is focused on improving the environmental performance of steel product manufacturing is developed and demonstrated. The process models focus on part production employing electric arc furnace (EAF) steelmaking and sand casting with chemical binders, and relate process energy and material inputs and outputs to product and process design characteristics. The models are based on scientific principles, as well as empirical data reported in the literature. Models of the two processes are applied to assess the production of a representative ground engaging tool (GET) component. It is found that EAF electricity use can be reduced by more than 30% and process-related CO2 emissions by nearly 20% over initial settings. Replacing the polyurethane nobake sand mold binder with a low nitrogen furan binder is predicted to reduce casting emissions by more than 50%, and sulfur dioxide emissions by over 90%. Thus, the models are capable of estimating changes in environmental performance due to modifications in material type, part geometry, and process parameters. This process modeling approach demonstrates improvements in environmental performance for the production of a GET component, and can be extended to assess and compare other steel alloys and components.

References

1.
Szekely
,
J.
, 1996, “
Steelmaking and Industrial Ecology—Is Steel a Green Material?
,”
ISIJ Int.
,
36
(
1
), pp.
121
132
.
2.
Thomson
,
M. J.
,
Evenson
,
E. J.
,
Kempe
,
M. J.
, and
Goodfellow
,
H. D.
, 2000, “
Control of Greenhouse Gas Emissions From Electric Arc Furnace Steelmaking: Evaluation Methodology With Case Studies
,”
Ironmaking Steelmaking
,
27
(
4
), pp.
273
279
.
3.
WSA, 2010, “
A Global Approach to CO2 Emissions Reduction for the Steel Industry: A Position Paper Issued by the World Steel Association (World Steel)
,” February, World Steel Association, Brussels, Belgium.
4.
NRC, 2005, “
Decreasing Energy Intensity in Manufacturing: Assessing the Strategies and Future Directions of the Industrial Technologies Program
,” National Research Council, National Academies Press, Washington, D.C.
5.
U.S. Department of Energy (USDOE), 2006, “
Industrial Technologies Program: Improving the Energy Performance of U.S. Industry
,” Office of Energy Efficiency and Renewable Energy, Washington, D.C.
6.
U.S. Energy Information Administration (USEIA), 2009, “
Annual Energy Review 2008
,” Report No. DOE/EIA-0384(2008).
7.
Energetics, Inc., 2000, “
Energy and Environmental Profile of the U.S. Iron and Steel Industry
,” U.S. Department of Energy, Report No. DOE/EE-0229.
8.
WSA, 2010, “
Sustainable Steel
,” World Steel Association, accessed July 27, http://www.worldsteel.org/index.php?action=programs&id=70http://www.worldsteel.org/index.php?action=programs&id=70
9.
Pfeifer
,
H.
,
Kirschen
,
M.
, and
Simoes
,
J. P.
, 2005, “
Thermodynamic Analysis of EAF Electrical Energy Demand
,”
IOM3 Conference Proceedings, 8th European Electric Steelmaking Conference
, Birmingham, England, May 9–11, Institute of Materials, Minerals, and Mining, pp.
211
232
.
10.
Sahajwalla
,
V.
,
Zaharia
,
M.
,
Kongkarat
,
S.
,
Khanna
,
R.
,
Saha-Choudhury
,
N.
, and
O’Kane
,
P.
, 2010, “
Recycling Plastics as a Resource for Electric Arc Furnace (EAF) Steelmaking: Combustion and Structural Transformations of Metallurgical Coke and Plastic Blends
,”
Energy Fuels
,
24
, pp.
379
391
.
11.
WSA, 2010, “World Steel in Figures 2010,” World Steel Association, Brussels, Belgium.
12.
Baker
,
R.
, 1996, “
Electric Arc Versus Basic Oxygen Steelmaking Processes
,”
Mater. World
,
4
(
9
), pp.
514
516
.
13.
Schifo
,
J. F.
, and
Radia
,
J. T.
, 2004, “
Theoretical/Best Practice Energy Use in Metalcasting Operations
,” U.S. Department of Energy Industrial Technologies Program, Report.
14.
EPRI, 1997, “Understanding Electric Arc Furnace Operations,” The EPRI Center for Materials Production, Carnegie Mellon Research Institute, Pittsburgh, PA, TechCommentary No. TC-107714.
15.
U.S. Department of Energy (USDOE), 1999, “
Energy and Environmental Profile of the U.S. Metalcasting Industry
,” Office of Industrial Technologies.
16.
Singh
,
S.
,
Ramrattan
,
S. N.
,
Bringelson
,
L.
, and
Ahire
,
S.
, 1996, “
Simulation of a Foundry Sand System
,”
AFS Trans.
,
104
, pp.
821
824
.
17.
Winkler
,
E. S.
, and
Bol’shakov
,
A. A.
, 2000, “
Characterization of Foundry Sand Waste
,” Chelsea Center for Recycling and Economic Development, University of Massachusetts, Chelsea, MA, Technical Report #31.
18.
Fruehan
,
R. J.
, ed., 1998, “
The Making, Shaping, and Treating of Steel
,”
Steelmaking and Refining Volume
, 11th ed.,
The AISE Steel Foundation
,
Pittsburgh, PA
.
19.
U.S. Environmental Protection Agency (USEPA), 2005, “Iron and Steel Production,” Metallurgical Industry, AP 42, 5th ed., Vol. 1, p. 12.5, Section 12.5, Chap. 12.
20.
U.S. Environmental Protection Agency (USEPA), 1995, “Steel Foundries,” Metallurgical Industry, AP 42, 5th ed., Vol. 1, p. 12.13, Section 12.13, Chap. 12.
21.
von Schéele
,
J.
, 1999, “
The Electric Arc Furnace Process: Towards an Electricity Consumption Below 200 kWh/t
,”
Scand. J. Metall.
,
28
, pp.
169
177
.
22.
Köhle
,
S.
, 2002, “
Recent Improvements in Modelling Energy Consumption of Electric Arc Furnaces
,” 7th European Electric Steelmaking Conference, pp.
1.305
1.314
.
23.
Mesa
,
J. M.
,
Menendez
,
C.
,
Ortega
,
F. A.
, and
Garcia
,
P. J.
, 2009, “
A Smart Modelling for the Casting Temperature Prediction in an Electric Arc Furnace
,”
Int. J. Comput. Math.
,
86
(
7
), pp.
1182
1193
.
24.
Staib
,
W. E.
, and
Staib
,
R. B.
, 1992, “
The Intelligent Arc FurnaceTM Controller: A Neural Network Electrode Position Optimization System for the Electric Arc Furnace
,” Proceedings of the International Joint Conference on Neural Networks, pp.
III1
III9
.
25.
Wang
,
F.
,
Jin
,
Z.
, and
Zhu
,
Z.
, 2005, “
Modeling and Prediction of Electric Arc Furnace Based on Neural Network and Chaos Theory
,”
Lect. Notes Comput. Sci.
,
3498
, pp.
819
826
.
26.
Boulet
,
B.
,
Lalli
,
G.
, and
Ajersch
,
M.
, 2003, “
Modeling and Control of an Electric Arc Furnace
,” Proceedings of the American Control Conference, Denver, CO, June 4–6, pp.
3060
3064
.
27.
Bălan
,
R.
,
Mătieş
,
V.
,
Hancu
,
O.
,
Stan
,
S.
, and
Ciprian
,
L.
, 2007, “
Modeling and Control of an Electric Arc Furnace
,” Proceedings of the 16th Mediterranean Conference on Control & Automation, Athens, Greece, July 27–29, p.
6
.
28.
Abraham
,
S.
, and
Chen
,
S.
, 2007, “
EAF Energy and Material Balance Modeling
,” AISTech 2007 Proceedings, Indianapolis, IN, May 7–10, Vol. 1, pp.
733
745
.
29.
Hocine
,
L.
,
Yacine
,
D.
,
Kamel
,
B.
, and
Samira
,
K. M.
, 2009, “
Improvement of Electrical Arc Furnace Operation With an Appropriate Model
,”
Energy
,
34
(
9
), pp.
1207
1214
.
30.
Gaines
,
J. M.
, ed., 1982, “Design Part II, Operations, Special Topics,” BOF Steelmaking, Vol. 2, Iron and Steel Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., Warrendale, PA.
31.
Fine
,
H. A.
, and
Geiger
,
G. H.
, 1983,
Handbook on Material and Energy Balance Calculations in Metallurgical Processes
,
The Metallurgical Society of AIME
,
Warrendale, PA
.
32.
Gaines
,
J. M.
, ed., 1982, “Introduction, Theory and Design Part I,” BOF Steelmaking, Vol. 1, Iron and Steel Society of the American Institute of Mining, Metallurgical and Petroleum Engineers, Inc., Warrendale, PA.
33.
Çamdali
,
Ü.
, and
Tunç
,
M.
, 2002, “
Modelling of Electric Energy Consumption in the AC Electric Arc Furnace
,”
Int. J. Energy Res.
,
26
, pp.
935
947
.
34.
Çamdali
,
Ü.
, and
Tunç
,
M.
, 2005, “
Computation of Chemical Exergy Potential in an Industrial AC Electric ARC Furnace
,”
ASME J. Energy Resour. Technol.
,
127
(1), pp.
66
70
.
35.
Çamdali
,
Ü.
, 2005, “
Determination of the Optimum Production Parameters by Using Linear Programming in the AC Electric Arc Furnace
,”
Can. Metall. Q.
,
44
(
1
), pp.
103
110
.
36.
Middleton
,
J. R.
, and
Rolls
,
R.
, 1975, “
Dynamic Mathematical Model of the LD Steelmaking Process
,” Mathematical Process Models in Iron- and Steelmaking, The Metals Society, London, England, pp.
117
124
.
37.
Bekker
,
J. G.
,
Craig
,
I. K.
, and
Pistorius
,
P. C.
, 1999, “
Modeling and Simulation of an Electric Arc Furnace Process
,”
ISIJ Int.
,
39
(
1
), pp.
23
32
.
38.
Wendelstorf
,
J.
, and
Spitzer
,
K.-H.
, 2006, “
A Process Model for EAF Steelmaking
,” AISTech, Cleveland, OH, pp.
435
443
.
39.
Morales
,
R. D.
,
Rodríguez-Hernández
,
H.
,
Garnica-González
,
P.
, and
Romero-Serrano
,
J. A.
, 1997, “
A Mathematical Model for the Reduction Kinetics of Iron Oxide in Electric Furnace Slags by Graphite Injection
,”
ISIJ Int.
,
37
(
11
), pp.
1072
1080
.
40.
Morales
,
R. D.
,
Rodríguez-Hernández
,
H.
, and
Conejo
,
A. N.
, 2001, “
A Mathematical Simulator for the EAF Steelmaking Process Using Direct Reduced Iron
,”
ISIJ Int.
,
41
(
5
), pp.
426
435
.
41.
Morales
,
R. D.
,
Conejo
,
A. N.
, and
Rodríguez
,
H. H.
, 2002, “
Process Dynamics of Electric Arc Furnace During Direct Reduced Iron Melting
,”
Metallurgical and Materials Transactions B
,
33
, pp.
187
199
.
42.
Oosthuizen
,
D. J.
,
Viljoen
,
J. H.
,
Craig
,
I. K.
, and
Pistorius
,
P. C.
, 2001, “
Modelling of the Off-Gas Exit Temperature and Slag Foam Depth of an Electric Arc Furnace
,”
ISIJ Int.
,
41
(
4
), pp.
399
401
.
43.
Rathaba
,
L. P.
, 2004, “
Model Fitting for Electric Arc Furnace Refining
,” M.S. dissertation, University of Pretoria. Pretoria, South Africa.
44.
Rathaba
,
P. L.
,
Craig
,
I. K.
, and
Pistorius
,
P. C.
, 2003, “
Identification of an Electric Arc Furnace Model
,” Proceedings of the First African Control Conference (AFCON 2003), South African Council for Automation and Computation (SACAC), pp.
145
150
.
45.
Chan
,
E.
,
Riley
,
M.
,
Thomson
,
M. J.
, and
Evenson
,
E. J.
, 2004, “
Nitrogen Oxides (NOx) Formation and Control in an Electric Arc Furnace (EAF): Analysis With Measurements and Computational Fluid Dynamics (CFD) Modeling
,”
ISIJ Int.
,
44
(
2
), pp.
429
438
.
46.
Sutherland
,
J. W.
, and
Haapala
,
K. R.
, 2007, “
Optimization of Steel Production to Improve Lifecycle Environmental Performance
,”
CIRP Ann.
,
56
(
1
), pp.
5
8
.
47.
Haapala
,
K. R.
,
Rivera
,
J. L.
, and
Sutherland
,
J. W.
, 2009, “
Reducing Environmental Impacts of Steel Product Manufacturing
,”
Trans. NAMRI/SME
,
37
, pp.
419
426
.
48.
U.S. Department of Energy (USDOE), 1999, “
Energy and Environmental Profile of the U.S. Metalcasting Industry
,” Office of Industrial Technologies.
49.
U.S. Environmental Protection Agency (USEPA), 1998, “
Profile of the Metal Casting Industry
,” EPA Office of Compliance Sector Notebook Project, Report No. EPA/310-R-97-004.
50.
Scott
,
W. D.
,
Li
,
H.
,
Griffin
,
J.
, and
Bates
,
C. E.
, 2004, “
Production and Inspection of Quality Aluminum and Iron Sand Castings
,”
Handbook of Metallurgical Process Design
,
G. E.
Totten
,
K.
Funatani
, and
L.
Xie
, eds.,
Marcel Dekker
,
New York, NY
, Chap. 10.
51.
Palmer
,
W. G.
,
Scholz
,
R. C.
, and
Moorman
,
W.
, 1980, “
Carcinogenic Potential of Condensed Pyrolysis Effluents From Iron Foundry Casting Operations: A Preliminary Report
,”
AFS Trans.
,
88
, pp.
745
750
.
52.
Palmer
,
W. G.
, and
Scott
,
W. D.
, 1981, “
Lung Cancer in Ferrous Foundry Workers: A Review
,”
Am. Ind. Hyg. Assoc. J.
,
42
(
5
), pp.
329
339
.
53.
Naro
,
R. L.
, 1999, “
Porosity Defects in Iron Castings From Mold-Metal Interface Reactions
,”
AFS Trans.
,
107
, pp.
839
851
.
54.
Dungan
,
R. S.
, and
Reeves
,
J. B.
, III
, 2005, “
Pyrolysis of Foundry Sand Resins: A Determination of Organic Products by Mass Spectrometry
,”
J. Environ. Sci. Health, Part A
,
40
, pp.
1557
1567
.
55.
Wang
,
Y.
,
Cannon
,
F. S.
,
Salama
,
M.
,
Goudzwaard
,
J.
, and
Furness
,
J. C.
, 2007, “
Characterization of Hydrocarbon Emissions From Green Sand Foundry Core Binders by Analytical Pyrolysis
,”
Environ. Sci. Technol.
,
41
, pp.
7922
7927
.
56.
Lytle
,
C. A.
, and
McKinley
,
M. D.
, 1998, “
Determination of Thermal Decomposition Products From a Phenolic Urethane Resin by Pyrolysis-Gas Chromatography-Mass Spectrometry
,”
J. High Resolut. Chromatogr.
,
21
, pp.
128
132
.
57.
McKinley
,
M. D.
,
Lytle
,
C. A.
, and
Bertsch
,
W.
, 1999, “
Pyrolysis of Core Resins Used in Metalcasting
,”
AFS Trans.
,
107
, pp.
407
412
.
58.
Sobera
,
M.
, and
Hetper
,
J.
, 2003, “
Pyrolysis-Gas Chromatography-Mass Spectrometry of Cured Phenolic Resins
,”
J. Chromatogr. A
,
993
(
1
), pp.
131
135
.
59.
Gerasimov
,
G. Y.
, and
Pogosbekyan
,
Y. M.
, 2009, “
Kinetics of Thermal Decomposition of Organic Binders in Molds
,”
J. Eng. Phys. Thermophys.
,
82
(
1
), pp.
92
97
.
60.
Wang
,
Y.
,
Cannon
,
F. S.
,
Salama
,
M.
,
Fonseca
,
D. A.
, and
Giese
,
S.
, 2009, “
Characterization of Pyrolysis Products From a Biodiesel Phenolic Urethane Binder
,”
Environ. Sci. Technol.
,
43
, pp.
1559
1564
.
61.
Mosher
,
G. E.
, 1994, “
Calculating Emission Factors for Pouring, Cooling, and Shakeout
,”
Mod. Cast.
,
84
(
10
), pp.
28
31
.
62.
Scott
,
W. D.
, and
Bates
,
C. E.
, 1975, “
Decomposition of Resin Binders and the Relationship Between Gases Formed and the Casting Surface Quality
,”
AFS Trans.
,
83
, pp.
519
524
.
63.
Bates
,
C. E.
, and
Scott
,
W. D.
, 1976, “
The Decomposition of Resin Binders and the Relationship Between Gases Formed and the Casting Surface Quality: Part 2—Gray Iron
,”
AFS Trans.
,
84
, pp.
793
804
.
64.
Bates
,
C. E.
, and
Scott
,
W. D.
, 1977, “
Decomposition of Resin Binders and the Relationship Between Gases Formed and the Casting Surface Quality—Part 3
,”
AFS Trans.
,
85
, pp.
209
226
.
65.
Naro
,
R. L.
, 2002, “
Formation and Control of Lustrous Carbon Surface Defects in Iron and Steel Castings
,”
AFS Trans.
,
110
, pp.
815
834
.
66.
Scott
,
W. D.
,
Bates
,
C. E.
, and
James
,
R. H.
, 1977, “
Chemical Emissions From Foundry Molds
,”
AFS Trans.
,
85
, pp.
203
208
.
67.
Crandell
,
G. R.
,
Schifo
,
J. F.
, and
Mosher
,
G.
, 2006, “
CERP Organic HAP Emission Measurements for Iron Foundries and Their Use in Development of an AFS HAP Guidance Document
,”
AFS Trans.
10
, p.
17
.
68.
Srinivasan
,
N. K.
, 1985, “
Calculation of Yield: A System Model
,”
AFS Trans.
,
93
, pp.
11
12
.
69.
Peters
,
F.
,
Voigt
,
R.
,
Ou
,
S. Z.
, and
Beckermann
,
C.
, 2007, “
Effect of Mould Expansion on Pattern Allowances in Sand Casting of Steel
,”
Int. J. Cast Met. Res.
,
20
(
5
), pp.
275
287
.
70.
Peters
,
F.
, 2005, “
Reduction in Energy Consumption and Variability in Steel Foundry Operations
,” U.S. Department of Energy, DOE No. DE-FC07-02ID14228.
71.
Dalquist
,
S.
, and
Gutowski
,
T.
, 2004, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting
,” Proceedings of the 2004
ASME
International Mechanical Engineering Congress & Exposition, Anaheim, CA, Nov. 13–19, pp. 631–641, Paper No. IMECE2004-62599 (CD-ROM).
72.
Moore
,
C.
, and
Marshall
,
R. I.
, 1991,
Steelmaking, Institute of Metals
,
Brookfield
,
VT
.
73.
Sims
,
C. E.
, ed., 1963,
Electric Furnace Steelmaking, Volume II: Theory and Fundamentals
,
The American Institute of Mining, Metallurgical, and Petroleum Engineers, Interscience Publishers
,
New York, NY
.
74.
Anigstein
,
R.
,
Thurber
,
W. C.
,
Mauro
,
J. J.
,
Marschke
,
S. F.
, and
Behling
,
U. H.
, 2001, “
Potential Recycling of Scrap Metal from Nuclear Facilities
,” U.S. Environmental Protection Agency, S. Cohen & Associates, Technical Support Document.
75.
Bergman
,
K.
,
Gonzales
,
R.
,
Peroza
,
M. A.
, and
Herrera
,
M.
, 2001, “
Twin-Cathode DC EAF Concepts and Results at Hylsa, Mexico
,” La Revue de Metallurgie, January, pp.
55
62
.
76.
Turkdogan
,
E. T.
, 1996,
The Fundamentals of Steelmaking, The Institute of Minerals
,
The University Press
,
Cambridge, UK
.
77.
King
,
R. J.
, and
Chilcott
,
W. R.
, Jr.
, 1974, “
Chilling Effects of Ferroalloy Additions to Liquid Steel
,”
Physical Chemistry of Production or Use of Alloy Additives
,
J.
Farrel
, ed.,
The Metallurgical Society of the American Institute of Mining, Metallurgical and Petroleum Engineers
,
New York, NY
.
78.
Lampman
,
J. R.
, and
Peters
,
A. T.
, 1981, “
Ferroalloys and Other Additives to Liquid Iron and Steel
,” STP 739, American Society for Testing and Materials, Baltimore, MD.
79.
Smiley
,
L. E.
, 1988, “
Use of a Personal Computer to Predict Casting Heat Flow and Solidification
,”
AFS Trans.
,
96
, pp.
689
696
.
80.
Shukri
,
M. I.
, and
Elbasheer
,
A. M.
, 2006, “
An Expert System for Designing Gates and Risers for Small and Medium Side Castings
,”
Sudan Eng. Soc. J.
,
52
(
46
), pp.
39
47
.
81.
Guleyupoglu
,
S.
, 1997, “
Casting Process Design Guidelines
,”
AFS Trans.
,
105
, pp.
869
876
.
82.
Merchant
,
H. D.
, 1959, “
Dimensioning of Sand Casting Risers
,” AFS Transactions,
Proceedings of the 63rd Annual Meeting
, Des Plaines, IL, Apr. 13–17, Vol. 67.
83.
Subramanian
,
C.
, 2009, “
Fatigue Failure of a Ground-Engaging Tool
,”
J. Failure Anal. Prev.
,
9
, pp.
122
126
.
84.
University of Liverpool (UL), 2006, “
Electric Arc Furnace Simulation User Manual
,” Version 1, accessed Sept.
12
, http://www.steeluniversity.org/content/html/eng/EAF_UserGuide.pdfhttp://www.steeluniversity.org/content/html/eng/EAF_UserGuide.pdf
85.
Groover
,
M. P.
, 2007,
Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
, 3rd ed.,
John Wiley & Sons
,
Hoboken, NJ
.
86.
Sims
,
C. E.
, ed., 1962,
Electric Furnace Steelmaking, Vol. 1: Design Operation, and Practice
,
The American Institute of Mining, Metallurgical, and Petroleum Engineers, Interscience Publishers
,
New York, NY
.
87.
Sharp
,
J. D.
, 1967,
Modern Steelmaking Practice: Electric Steelmaking
,
CRC Press
,
Cleveland, OH
.
88.
ISI, 1961, “The Effect of the Various Steelmaking Processes on the Energy Balances of Integrated Iron- and Steelworks,” The Iron and Steel Institute, London, England, Special Report No. 71.
89.
Peaslee
,
K. D.
,
Lekakh
,
S.
, and
Randall
,
B.
, 2004, “
Thermal Efficiency of Steel Melting
,” Proceedings of the 58th SFSA Technical and Operating Conference, Steel Founders Society of America, Chicago, IL, Paper No. 4.7.
90.
Midea
,
T.
, and
Shah
,
J. V.
, 2002, “
Mold Material Thermophysical Data
,”
AFS Trans.
,
110
, pp.
121
136
.
You do not currently have access to this content.