This paper presents analytical and experimental results of ductile-mode machining of brittle material by milling process. In milling process of brittle material, feed per edge is the predominant parameter to achieve ductile-mode machining and hence it limits the permissible material removal rate. An analytical model has been proposed to evaluate the effect of tool diameter on the critical feed per edge for ductile-brittle transition in milling process of brittle material. The proposed model has been validated experimentally by performing microcutting tests on tungsten carbide workpiece by milling process. It has been established by the model and the experimental results that an end-mill of larger diameter improves the critical feed per edge for ductile-brittle transition in milling process of brittle material.

References

References
1.
Fang
,
F. Z.
, and
Chen
,
L. J.
, 2000, “
Ultra-Precision Cutting for ZKN7 Glass
,”
Ann. ICRP
,
49
(
1
), pp.
17
20
.
2.
Komanduri
,
R.
,
Lucca
,
D. A.
, and
Tani
,
Y.
, 1997, “
Technological Advances in Fine Abrasive Processes
,”
Ann. CIRP
,
46
(
2
), pp.
545
596
.
3.
Marshall
,
D. B.
, and
Lawn
,
B. R.
, 1986, “
Indentation of Brittle Materials
,”
Microindentation Techniques in Materials Science and Engineering, ASTM STP 889
,
P. J.
Blau
and
B. R.
Lawn
, eds.,
American Society for Testing Materials
,
Philadelphia
, pp.
26
46
.
4.
Blackley
,
W. S.
, and
Scattergood
,
R. O.
, 1991, “
Ductile Regime Model for Diamond Turning of Brittle Materials
,”
Precis. Eng.
,
13
(
2
), pp.
95
102
.
5.
Bifano
,
T. G.
, and
Fawcett
,
S. C.
, 1991, “
Specific Grinding Energy as an In-Process Control Variable for Ductile-Regime Grinding
,”
Precis. Eng.
,
13
(
4
), pp.
256
262
.
6.
Sreejith
,
P. S.
, and
Ngoi
,
B. K. A.
, 2001, “
Material Removal Mechanism in Precision Machining of New Materials
,”
Int. J. Mach. Tool. Manuf.
,
41
(
12
), pp.
1831
1843
.
7.
Cai
,
M. B.
,
Li
,
X. P.
, and
Rahman
,
M.
, 2007, “
Study of the Mechanism of Nanoscale Ductile Mode Cutting of Silicon Using Molecular Dynamic Simulation
,”
Int. J. Mach. Tool. Manuf.
,
47
(
1
), pp.
75
80
.
8.
Fang
,
F. Z.
, and
Zhang
,
G. X.
, 2004, “
An Experimental Study of Optical Glass Machining
,”
Int. J. Adv. Manuf. Technol.
,
23
(
3–4
), pp.
155
160
.
9.
Patten
,
J.
,
Gao
,
W.
, and
Yasuto
,
K.
, 2005, “
Ductile Regime Nanomachining of Single-Crystal Silicon Carbide
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
522
532
.
10.
Arefin
,
S.
,
Li
,
X. P.
,
Rahman
,
M.
, and
Liu
,
K.
, 2007, “
The Upper Bound of Tool Edge Radius for Nanoscale Ductile Mode Cutting of Silicon Wafer
,”
Int. J. Adv. Manuf. Technol.
,
31
(
7–8
), pp.
655
662
.
11.
Puttick
,
K. E.
,
Rudman
,
M. R.
,
Smith
,
K. J.
,
Franks
,
A.
, and
Lindsey
,
K.
, 1989, “
Single-Point Diamond Machining of Glasses
,”
Proc. R. Soc., London, Ser A
,
426
, pp.
19
30
.
12.
Moriwaki
,
T.
,
Shamato
,
E.
, and
Inoue
,
K.
, 1992, “
Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration
,”
Ann. CIRP
,
41
(
1
), pp.
141
144
.
13.
Schinker
,
M. G.
, and
Doll
,
W.
, 1987, “
Turning of Optical Glasses at Room Temperature
,”
Proc. SPIE
,
802
, pp.
70
80
.
14.
Matsumura
,
T.
,
Hiramatsu
,
T.
,
Shirakashi
,
T.
, and
Muramatsu
,
T.
, 2005, “
A Study on Cutting Force in the Milling Process of Glass
,”
J. Manuf. Process.
,
7
(
2
), pp.
102
108
.
15.
Arif
,
M.
,
Rahman
,
M.
,
San
,
W. Y.
, and
Doshi
,
N.
, 2011, “
An Experimental Approach to Study the Capability of End-Milling for Microcutting of Glass
,”
Int. J. Adv. Manuf. Technol.
,
53
(9–12)
, pp.
1063
1073
.
16.
Foy
,
K.
,
Wei
,
Z.
,
Matsumura
,
T.
, and
Yong
,
H.
, 2009, “
Effect of Tilt Angle on Cutting Regime Transition in Glass Micromilling
,”
Int. J. Mach. Tool. Manuf.
,
49
(
3–4
), pp.
315
324
.
17.
Arif
,
M.
,
Rahman
,
M.
, and
Wong
,
W. S.
, 2010, “
Analytical Model to Determine the Critical Feed per Edge for Ductile-Brittle Transition in Milling Process of Brittle Materials
,”
Int. J. Mach. Tool. Manuf.
,
51
(
3
), pp.
170
181
.
18.
Lawn
,
B. R.
,
Evans
,
A. G.
, and
Marshall
,
D. B.
, 1980, “
Elastic-Plastic Indentation Damage in Ceramics: The Median Radial Crack System
,”
J. Am. Ceram. Soc.
,
63
(
9–10
), pp.
574
581
.
19.
Lawn
,
B. R.
,
Evans
,
A. G.
, and
Marshal
,
D. B.
, 1982, “
Elastic/Plastic Indentation Damage in Ceramics: The Radial Crack System
,”
J. Am. Ceram. Soc.
,
65
(
11
), pp.
561
566
.
20.
Shimada
,
S.
,
Ikawa
,
N.
,
Inamura
,
T.
,
Takezawa
,
N.
,
Ohmori
,
H.
, and
Sata
,
T.
, 1995, “
Brittle-Ductile Transition Phenomena in Microindentation and Micromachining
,”
Ann. ICRP
,
44
(
1
), pp.
523
526
.
You do not currently have access to this content.