In part 1, traditional methods of tool wear characterization were qualitatively assessed, and consequently a volumetric approach of wear quantification was developed, standardized, and evaluated using a gauge R&R study. The objective of this paper is to experimentally investigate and validate this assessment methodology using the wear results from a series of controlled machining experiments on grade-5 titanium alloy. The traditionally difficult-to-machine alloy, Ti-6Al-4V, was specifically chosen as the work material in order to highlight how the use of this assessment methodology is necessitated especially because of (i) the pronounced complexities in the geometric profiles of typical cutting tools employed for machining Ti-6Al-4V and (ii) its nonconformity in behavior with standard tool wear models, such as the Taylor’s tool life model and its extensions. This assessment methodology is then validated through the simultaneous analysis and comparison of traditional flank wear and associated photomicrographs with volumetric wear and its evolution. Furthermore, the concept of the M-ratio and its derivatives are developed to quantify the efficiency of the cutting tool during each pass at a constant material removal rate (MRR).

References

1.
Kuttolamadom
,
M. A.
,
Jones
,
J. J.
,
Mears
,
M. L.
, and
Choragudi
,
A.
, 2010,
“Investigation of the Machining of Titanium Components for Lightweight Vehicles
,” SAE 2010 World Congress and Exhibition,SAE Paper No. 2010-01-0022.
2.
Konig
,
W.
, 1979, “
Applied Research on the Machinability of Titanium and Its Alloys
,” Proceedings of the AGARD Conference on Advanced Fabrication Processes, Florence, Italy, CP-256, p.
10
.
3.
Konig
,
W.
,
Tondorf
,
J.
, and
Bouzakis
,
K.
, 1979, “
Possibilities to Avoid Built-Up Edges in Gear Hobbing
,”
Ann. CIRP
,
28
(
1
), pp.
77
81
.
4.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
, 1997, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
5.
Yang
,
X.
, and
Liu
,
C. R.
, 1999, “
Machining Titanium and Its Alloys
,”
Mach. Sci. Technol.
,
3
(
1
), pp.
107
139
.
6.
Rahman
,
M.
,
Wang
,
Z. G.
, and
Wong
,
Y. S.
, 2006, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J.
,
49
(
1
), pp.
11
20
.
7.
Kertesz
,
K.
,
Pryor
,
R. J.
,
Richerson
,
D. W.
, and
Cutler
,
R. A.
, 1988, “
Machining Titanium Alloys With Ceramic Tools
,”
J. Mater.
,
40
(
5
), pp.
50
51
.
8.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
, 2006, “
Modeling the Progression of Flank Wear on Uncoated and Ceramic-Coated Polycrystalline Cubic Boron Nitride Tools in Hard Turning
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
104
109
.
9.
Shaffer
,
W.
, 2007, “
Gaining the Edge in CBN Tool Performance
,” http://www.gearsolutions.com/http://www.gearsolutions.com/
10.
Kahles
,
J. F.
,
Eylon
,
D.
,
Froes
,
F. H.
, and
Field
,
M.
, 1985, “
Machining of Titanium Alloys
,”
J. Met.
,
37
, pp.
27
35
.
11.
Rahman
,
M.
,
Wong
,
Y. S.
, and
Zareena
,
A. R.
, 2003, “
Machinability of Titanium Alloys
,”
JSME Int. J.
,
46
(
1
), pp.
107
115
.
12.
Singh
,
R.
, and
Khamba
,
J. S.
, 2006, “
Ultrasonic Machining of Titanium and Its Alloys: A Review
,”
J. Mater. Process. Technol.
,
173
, pp.
125
135
.
13.
U.S. Dept. of Defense, 1974, Military Handbook: Titanium and Titanium Alloys, Dept. of Defense, Washington, D.C., Document No. MIL-HDBK-697A.
14.
Donachie
,
M. J.
, 2000,
Titanium: A Technical Guide
,
ASM International
, Materials Park, OH.
15.
Shaw
,
M. C.
, 2004,
Metal Cutting Principles
,
MIT Press
,
Cambridge, MA
.
16.
Dieter
,
G.
, 1986,
Mechanical Metallurgy
,
McGraw-Hill
,
New York
.
17.
Lim
,
S. C.
, and
Ashby
,
M. F.
, 1987, “
Overview No. 55 Wear-Mechanism Maps
,”
Acta Metall.
,
35
(
1
), pp.
1
24
.
18.
Jaffery
,
S.
, and
Mativenga
,
P.
, 2009, “
Assessment of the Machinability of Ti-6Al-4V Alloy Using the Wear Map Approach
,”
Int. J. Adv. Manuf. Technol.
,
40
(
7
), pp.
687
696
.
19.
Donachie
,
M. J.
, 1982,
Titanium and Titanium Alloys (Source Book)
,
ASM International
,
Materials Park, OH
.
20.
ASM
, 1995,
ASM Specialty Handbook: Tool Materials
,
ASM International
,
Materials Park, OH
.
21.
Kendall
,
L. A.
, 1994,
ASM Metals Handbook: Machining, Tool Wear and Tool Life
,
ASM International
, Materials Park, OH.
22.
Wright, P. K., 1983, “Physical Models of Tool Wear for Adaptive Control in Flexible Machining Cells,” ASME Production Engineering Division, 8, pp. 19–31.
23.
Konig
,
B.
, 1971, “
Validity of the Taylor Equation in Metal Cutting
,”
Ann. CIRP
,
19
(
4
), p.
793
.
24.
Komanduri
,
R.
, 1982, “
Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys
,”
Wear
,
76
(
1
), pp.
15
34
.
25.
Zoya
,
Z. A.
, and
Krishnamurthy
,
R.
, 2000, “
The Performance of CBN Tools in the Machining of Titanium Alloys
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
80
86
.
26.
Obikawa
,
T.
, and
Usui
,
E.
, 1996, “
Computational Machining of Titanium Alloy—Finite Element Modeling and a Few Results
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
208
215
.
27.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
, 2008, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
275
288
.
28.
Umbrello
,
D.
, 2008, “
Finite Element Simulation of Conventional and High Speed Machining of Ti6Al4V Alloy
,”
J. Mater. Process. Technol.
,
196
(
1–3
), pp.
79
87
.
29.
Ginting
,
A.
, and
Nouari
,
M.
, 2007, “
Optimal Cutting Conditions When Dry End Milling the Aeroengine Material Ti-6242s
,”
J. Mater. Process. Technol.
,
184
(
1–3
), pp.
319
324
.
30.
Wang
,
Z. G.
,
Rahman
,
M.
,
Wong
,
Y. S.
, and
Li
,
X. P.
, 2005, “
A Hybrid Cutting Force Model for High-Speed Milling of Titanium Alloys
,”
CIRP Ann.– Manuf. Technol.
,
54
(
1
), pp.
71
74
.
31.
Li
,
R.
, and
Shih
,
A. J.
, 2006, “
Finite Element Modeling of 3D Turning of Titanium
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3
), pp.
253
261
.
32.
Sun
,
J.
, and
Guo
,
Y.
, 2009, “
Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti-6Al-4V
,”
Int. J. Adv. Manuf. Technol.
,
41
(
7
), pp.
651
659
.
33.
Nouari
,
M.
, and
Ginting
,
A.
, 2006, “
Wear Characteristics and Performance of Multi-Layer CVD-Coated Alloyed Carbide Tool in Dry End Milling of Titanium Alloy
,”
Surf. Coat. Technol.
,
200
(
18–19
), pp.
5663
5676
.
34.
Che-Haron
,
C. H.
, 2001, “
Tool Life and Surface Integrity in Turning Titanium Alloy
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
231
237
.
35.
Sandvik
Coromant
, 2008,
Application Guide: Titanium Machining
,
AB Sandvik-Coromant
,
Sandviken, Sweden
.
36.
Usui
,
E.
,
Shirakashi
,
T.
, and
Kitagawa
,
T.
, 1984, “
Analytical Prediction of Cutting Tool Wear
,”
Wear
,
100
(
1–3
), pp.
129
151
.
37.
Takeyama
,
H.
, and
Murata
,
R.
, 1963, “
Basic Investigations on Tool Wear
,”
ASME J. Eng. Ind.
,
85
, pp.
33
37
.
38.
Davim
,
J. P.
, 2008,
Machining: Fundamentals and Recent Advances
,
Springer
,
New York
.
39.
Burger
,
U.
,
Kuttolamadom
,
M. A.
,
Bryan
,
A. M.
,
Mears
,
M. L.
, and
Kurfess
,
T. R.
, 2009, “
Volumetric Flank Wear Characterization for Titanium Milling Insert Tools
,” Proceedings of the ASME International Manufacturing Science and Engineering Conference, West Lafayette, IN, Oct. 4–7,
ASME
Paper No. MSEC2009-84256.
40.
Dawson
,
T. G.
, and
Kurfess
,
T. R.
, 2005, “
Quantification of Tool Wear Using White Light Interferometry and Three-Dimensional Computational Metrology
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
591
596
.
41.
Iscar Corporation, 2009, Milling Tools Catalog, http://www.icar.comhttp://www.icar.com
42.
ISO, 1989, “
Tool Life Testing in MillingPart 1: Face Milling, Part 2: End Milling
,” Geneva, Switzerland, Standard No. ISO 8688-1, ISO 8688-2.
43.
Kuttolamadom
,
M. A.
,
Mehta
,
P.
,
Mears
,
M. L.
, and
Kurfess
,
T. R.
, 2012, “
The Correlation of Volumetric Tool Wear & Wear Rate of Machining Tools With the Material Removal Rate of Titanium Alloys
,” Proceedings of the ASME International Manufacturing Science and Engineering Conference, Notre Dame, IN, June 4–8,
ASME
Paper No. MSEC2012-7338.
44.
Khare
,
J. S.
, 1983, “
Machining Ratio as a Basis for Tool Life Assessment
,”
Wear
,
88
(
2
), pp.
145
154
.
45.
Kuttolamadom
,
M. A.
, and
Mears
,
M. L.
, 2011, “
On the Volumetric Assessment of Tool Wear in Machining Inserts With Complex Geometries: Need, Methodology and Validation
,” Proceedings of the ASME International Manufacturing Science and Engineering Conference, Corvallis, OR, June 13–17,
ASME
Paper No. MSEC2011-50278.
You do not currently have access to this content.