A multiscale model is developed to investigate the heat/mass transport and dendrite growth in laser spot conduction welding. A macroscale transient model of heat transport and fluid flow is built to study the evolution of temperature and velocity field of the molten pool. The molten pool shape is calculated and matches well with the experimental result. On the microscale level, the dendritic growth of 304 stainless steel is simulated by a novel model that has coupled the cellular automata (CA) and phase field (PF) methods. The epitaxial growth is accurately identified by defining both the grain density and dendrite arm density at the fusion line. By applying the macroscale thermal history onto the microscale calculation domain, the microstructure evolution of the entire molten pool is simulated. The predicted microstructure achieves a good quantitative agreement with the experimental results.

References

References
1.
David
,
S. A.
,
Babu
,
S. S.
, and
Vitek
,
J. M.
,
2003
, “
Welding: Solidification and Microstructure
,”
JOM
,
55
, pp.
14
20
.10.1007/s11837-003-0134-7
2.
DebRoy
,
T.
, and
David
,
S. A.
,
1995
, “
Physical Processes in Fusion Welding
,”
Rev. Mod. Phys.
,
67
, pp.
85
112
.10.1103/RevModPhys.67.85
3.
Ki
,
H.
,
Mohanty
,
P. S.
, and
Mazumder
,
J.
,
2002
, “
Modeling of Laser Keyhole Welding: Part II. Simulation of Keyhole Evolution, Velocity, Temperature Profile, and Experimental Verification
,”
Metall. Mater. Trans. A
,
33
, pp.
1831
1842
.10.1007/s11661-002-0191-5
4.
Zhao
,
C. X.
,
Richardson
,
I. M.
, and
Pan
,
Y.
,
2009
, “
Liquid Metal Flow Behaviour During Conduction Laser Spot Welding
,”
Weld. World
,
53
, pp.
271
275
.
5.
Kou
,
S.
, and
Le
,
Y.
,
1983
, “
Three-Dimensional Heat Flow and Solidification During the Autogeneous GTA Welding of Aluminum Plates
,”
Metall. Trans. A
,
14
, pp.
2245
2253
.10.1007/BF02663298
6.
Pitscheneder
,
W.
,
DebRoy
,
T.
,
Mundra
,
K.
, and
Ebner
,
R.
,
1996
, “
Role of Sulfur and Processing Variables on the Temporal Evolution of Weld Pool Geometry During Multikilowatt Laser Beam Welding of Steels
,”
Weld. J.
,
75
, pp.
71.s
80.s
.
7.
Kim
,
W. H.
,
Fan
,
H. G.
, and
Na
,
S. J.
,
1997
, “
Effect of Various Driving Forces on Heat and Mass Transfer in Arc Welding
,”
Numer. Heat Transfer, Part A
,
32
, pp.
633
652
.10.1080/10407789708913910
8.
Fan
,
H. G.
,
Tsai
,
H. L.
, and
Na
,
S. J.
,
2000
, “
Heat Transfer and Fluid Flow in a Partially or Fully Penetrated Weld Pool in Gas Tungsten Arc Welding
,”
Int. J. Heat Mass Transfer
,
44
, pp.
417
428
.10.1016/S0017-9310(00)00094-6
9.
Zhang
,
W.
,
Roy
,
G. G.
,
Elmer
,
J. W.
, and
DebRoy
,
T.
,
2003
, “
Modeling of Heat Transfer and Fluid Flow During Gas Tungsten Arc Spot Welding of Low Carbon Steel
,”
J. Appl. Phys.
,
93
, pp.
3022
3033
.10.1063/1.1540744
10.
He
,
X.
,
Fuerschbach
,
P. W.
, and
DebRoy
,
T.
,
2003
, “
Heat Transfer and Fluid Flow During Laser Spot Welding of 304 Stainless Steel
,”
J. Phys. D
,
36
, pp.
1388
1398
.10.1088/0022-3727/36/12/306
11.
Yeh
,
R.-H.
,
Liaw
,
S.-P.
, and
Tu
,
Y.-P.
,
2007
, “
Transient Three-Dimensional Analysis of Gas Tungsten Arc Welding Plates
,”
Numer. Heat Transfer, Part A
,
51
, pp.
573
592
.10.1080/10407780600878966
12.
Farzadi
,
A.
,
Serajzadeh
,
S.
, and
Kokabi
,
A. H.
,
2008
, “
Modeling of Heat Transfer and Fluid Flow During Gas Tungsten Arc Welding of Commercial Pure Aluminum
,”
Int. J. Adv. Manuf. Technol.
,
38
, pp.
258
267
.10.1007/s00170-007-1106-9
13.
Chakraborty
,
N.
,
2009
, “
The Effects of Turbulence on Molten Pool Transport During Melting and Solidification Processes in Continuous Conduction Mode Laser Welding of Copper-Nickel Dissimilar Couple
,”
Appl. Therm. Eng.
,
29
, pp.
3618
3631
.10.1016/j.applthermaleng.2009.06.018
14.
Yang
,
Z.
,
Sista
,
S.
,
Elmer
,
J. W.
, and
Debroy
,
T.
,
2000
, “
Three Dimensional Monte Carlo Simulation of Grain Growth During GTA Welding of Titanium
,”
Acta Mater.
,
48
, pp.
4813
4825
.10.1016/S1359-6454(00)00279-2
15.
Koseki
,
T.
,
Inoue
,
H.
,
Fukuda
,
Y.
, and
Nogami
,
A.
,
2003
, “
Numerical Simulation of Equiaxed Grain Formation in Weld Solidification
,”
Sci. Technol. Adv. Mater.
,
4
, pp.
183
195
.10.1016/S1468-6996(03)00026-3
16.
Zhan
,
X. H.
,
Dong
,
Z. B.
,
Wei
,
Y. H.
, and
Ma
,
R.
,
2009
, “
Simulation of Grain Morphologies and Competitive Growth in Weld Pool of Ni-Cr Alloy
,”
J. Cryst. Growth
,
311
, pp.
4778
4783
.10.1016/j.jcrysgro.2009.09.008
17.
Yin
,
H.
, and
Felicelli
,
S. D.
,
2010
, “
Dendrite Growth Simulation During Solidification in the LENS Process
,”
Acta Mater.
,
58
, pp.
1455
1465
.10.1016/j.actamat.2009.10.053
18.
Cao
,
Y.
, and
Choi
,
J.
,
2007
, “
Solidification Microstructure Evolution Model for Laser Cladding Process
,”
ASME J. Heat Transfer
,
129
, pp.
852
863
.10.1115/1.2712856
19.
Bottger
,
B.
,
Apel
,
M.
,
Eiken
,
J.
,
Schaffnit
,
P.
, and
Steinbach
,
I.
,
2008
, “
Phase-Field Simulation of Solidification and Solid-State Transformations in Multicomponent Steels
,”
Steel Res. Int.
,
79
, pp.
608
616
.10.2374/SRI08SP021-79-2008-608
20.
Tan
,
W.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2011
, “
A Novel Integrated Model Combining Cellular Automata and Phase Field Methods for Microstructure Evolution During Solidification of Multi-Component and Multi-Phase Alloys
,”
Comput. Mater. Sci.
,
50
, pp.
2573
2585
.10.1016/j.commatsci.2011.03.044
21.
Tan
,
W.
,
Wen
,
S.
,
Bailey
,
N. S.
, and
Shin
,
Y. C.
,
2011
, “
Multiscale Modeling of Transport Phenomena and Dendritic Growth in Laser Cladding Processes
,”
Metall. Mater. Trans. B
,
42
, pp.
1306
1318
.10.1007/s11663-011-9545-y
22.
Wen
,
S.
, and
Shin
,
Y. C.
,
2010
, “
Modeling of Transport Phenomena During the Coaxial Laser Direct Deposition Process
,”
J. Appl. Phys.
,
108
, p.
044908
.10.1063/1.3474655
23.
He
,
X.
,
Elmer
,
J. W.
, and
Debroy
,
T.
,
2005
, “
Heat Transfer and Fluid Flow in Laser Microwelding
,”
J. Appl. Phys.
,
97
, p.
084909
.10.1063/1.1873032
24.
Hunt
,
J. D.
,
1984
, “
Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic
,”
Mater. Sci. Eng.
,
65
, pp.
75
83
.10.1016/0025-5416(84)90201-5
25.
Kurz
,
W.
, and
Fisher
,
D.
,
1998
,
Fundamentals of Solidification
,
Trans Tech Publications
,
Uetikon-Zuerich, Switzerland
.
26.
Badillo
,
A.
, and
Beckermann
,
C.
,
2006
, “
Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification
,”
Acta Mater.
,
54
, pp.
2015
2026
.10.1016/j.actamat.2005.12.025
27.
Wang
,
W.
,
Lee
,
P. D.
, and
McLean
,
M.
,
2003
, “
A Model of Solidification Microstructures in Nickel-Based Superalloys: Predicting Primary Dendrite Spacing Selection
,”
Acta Mater.
,
51
, pp.
2971
2987
.10.1016/S1359-6454(03)00110-1
28.
Zhu
,
M. F.
, and
Hong
,
C. P.
,
2001
, “
A Modified Cellular Automaton Model for the Simulation of Dendritic Growth in Solidification of Alloys
,”
ISIJ Int.
,
41
, pp.
436
445
.10.2355/isijinternational.41.436
29.
Raghavan
,
S. A.
,
2005
, “
A Numerical Model for Dendritic Growth in Binary Alloys
,”
Ph.D. thesis
,
Purdue Univeristy
,
West Lafayette, IN
.
30.
Kim
,
S. G.
,
Kim
,
W. T.
, and
Suzuki
,
T.
,
1999
, “
Phase-Field Model for Binary Alloys
,”
Phys. Rev. E
,
60
, pp.
7186
7197
.10.1103/PhysRevE.60.7186
31.
Cha
,
P.-R.
,
Yeon
,
D.-H.
, and
Yoon
,
J.-K.
,
2005
, “
Phase-Field Model for Multicomponent Alloy Solidification
,”
J. Cryst. Growth
,
274
, pp.
281
293
.10.1016/j.jcrysgro.2004.10.002
32.
Rappaz
,
M.
, and
Gandin
,
C. A.
,
1993
, “
Probabilistic Modelling of Microstructure Formation in Solidification Processes
,”
Acta Metall. Mater.
,
41
, pp.
345
360
.10.1016/0956-7151(93)90065-Z
33.
Kou
,
S.
,
2002
,
Welding Metallurgy
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
34.
Miettinen
,
J.
,
1999
, “
Thermodynamic Reassessment of Fe-Cr-Ni System With Emphasis on the Iron-Rich Corner
,”
CALPHAD: Comput. Coupling Phase Diagrams Thermochem.
,
23
, pp.
231
248
.10.1016/S0364-5916(99)00027-9
35.
Miettinen
,
J.
,
2000
, “
Thermodynamic-Kinetic Simulation of Constrained Dendrite Growth in Steels
,”
Metall. Mater. Trans. B
,
31
, pp.
365
379
.10.1007/s11663-000-0055-6
36.
Beltran-Sanchez
,
L.
, and
Stefanescu
,
D. M.
,
2004
, “
A Quantitative Dendrite Growth Model and Analysis of Stability Concepts
,”
Metall. Mater. Trans. A
,
35
, pp.
2471
2485
.10.1007/s11661-006-0227-3
You do not currently have access to this content.