Indirect, online tool wear monitoring is one of the most difficult tasks in the context of industrial machining operation. The challenge is how to construct an effective model that can consistently exemplify the degradation propagation of tool performance (i.e., tool wear) based on a continuous acquisition of multiple sensor signals. This paper proposes an adaptive Gaussian mixture model (AGMM) to provide a comprehensible and robust indication (i.e., Kullback–Leibler (KL) divergence) for quantifying tool performance degradation. Based on dynamic learning rate, parameter updating, and merge and split of Gaussian components, AGMM is capable of online adaptively learning the dynamic changes of tool performance in its full life. Furthermore, the performance changes of tools are quantified by measuring the distance between two density distributions approximated by the AGMM and the baseline GMM trained by the normal data, respectively. Experimental results of its application in a machine tool test demonstrate the effectiveness of the AGMM-based KL-divergence indication for assessment of tool performance degradation.

References

1.
Zhu
,
K. P.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
, 2008, “
Noise-Robust Tool Condition Monitoring in Micro-Milling With Hidden Markov Models
,”
Soft Comput. Appl. Ind., STUDFUZZ
226
(
23–46
d), pp.
23
46
.
2.
Noori-Khajavi
,
A.
, and
Komanduri
,
R.
, 1993, “
On Multisensor Approach to Drill Wear Monitoring
,”
CIRP Ann. Manuf. Technol.
,
42
(
1
), pp.
71
74
.
3.
Wong
,
Y. S.
,
Nee
,
A. Y. C.
,
Li
,
X. Q.
, and
Reisdorf
,
C.
, 1997, “
Tool Condition Monitoring Using Laser Scatter Pattern
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
205
210
.
4.
Dimla
,
D. E.
, Sr.
, and
Lister
,
P. M.
, 2000, “
On-Line Metal Cutting Tool Condition Monitoring I: Force and Vibration Analysis
,”
Int. J. Mach. Tools Manuf.
,
40
(
5
), pp.
739
768
.
5.
Dimla
,
D. E.
, Sr.
, 2000, “
Sensor Signals for Tool Wear Monitoring in Metal Cutting Operations—Review of Methods
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1073
1098
.
6.
Hutton
,
D. V.
, and
Hu
,
F.
, 1999, “
Acoustic Emission Monitoring of Tool Wear in End-Milling Using Time-Domain Averaging
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
8
12
.
7.
Toh
,
C. K.
, 2004, “
Vibration Analysis in High Speed Rough and Finish Milling Hardened Steel
,”
J. Sound Vib.
,
278
(
1–2
), pp.
101
115
.
8.
Mesina
,
O. S.
, and
Langari
R.
, 2001, “
A Neuro-Fuzzy System for Tool Condition Monitoring in Metal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
123
(
2
), pp.
312
318
.
9.
Cho
,
S.
,
Asfour
,
S.
,
Onar
,
A.
, and
Kaundinya
,
N.
, 2005, “
Tool Break Detection using Support Vector Machine Learning in a Milling Process
,”
Int. J. Mach. Tools Manuf.
,
45
(
3
), pp.
241
249
.
10.
Dutta
,
R. K.
,
Kiran
,
G.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
, 2000, “
Assessment of Machining Features for Tool Condition Monitoring in Face Milling Using Artificial Neural Network
,”
J. Eng. Manuf., Proc. Inst. Mech. Eng. B
,
214
(
7
), pp.
535
546
.
11.
Wang
,
L.
,
Mehrabi
,
M. G.
, and
Kannatey-Asibu
,
E.
, Jr.
, 2002, “
Hidden Markov Model-Based Tool Wear Monitoring in Turning
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), pp.
651
658
.
12.
Dutta
,
R. K.
,
Paul
,
S.
, and
Chattopadhyay
,
A. B.
, 2000, “
Fuzzy Controlled Back Propagation Neural Network for Tool Condition Monitoring in Face Milling
,”
Int. J. Product. Res.
,
38
(
13
), pp.
2989
3010
.
13.
Bhattacharyya
,
P.
,
Sengupta
,
D.
, and
Mukhopadhyay
,
S.
, 2007, “
Cutting Force-Based Real-Time Estimation of Tool Wear in Face Milling Using a Combination of Signal Processing Techniques
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2665
2683
.
14.
Chandrasekaran
,
M.
,
Muralidhar
,
M.
,
Murali Krishna
,
C.
, and
Dixit
,
U. S.
, 2010, “
Application of Soft Computing Techniques in Machining Performance Prediction and Optimization: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
445
464
.
15.
Abellan-Nebot
,
J. V.
, and
Subirón
,
F. R.
, 2010, “
A Review of Machining Monitoring Systems Based on Artificial Intelligence Process Models
,”
Int. J. Adv. Manuf. Technol.
,
47
(
1–4
), pp.
237
257
.
16.
Owsley
,
L. M. D.
,
Atlas
L. E.
and
Bernard
,
G. D.
, 1997, “
Self-Organizing Feature Maps and Hidden Markov Models for Machine-Tool Monitoring
,”
IEEE Trans. Signal Process.
,
45
(
11
), pp.
2787
2798
.
17.
Luo
,
R. C.
, and
Kay
,
M. G.
eds., 1995,
Multisensor Integration and Fusion for Intelligent Machines and Systems
,
Ablex Publishing Corporation
,
Norwood, NJ
.
18.
Ghosha
,
N.
,
Ravib
,
Y. B.
, and
Patrac
,
A.
,
Mukhopadhyayc
,
S.
,
Pauld
,
S.
,
Mohantyd
,
A. R.
, and
Chattopadhyay
,
A. B.
, 2007, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
466
479
.
19.
Chen
,
S. L.
, and
Jen
,
Y. W.
, 2000, “
Data Fusion neural Network for Tool Condition Monitoring in CNC Milling Machining
,”
Int. J. Mach. Tools Manuf.
,
40
(
3
), pp.
381
400
.
20.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
, 2001, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1363
1384
.
21.
Roth
,
J. T.
,
Djurdjanovic
,
D.
,
Yang
,
X.
,
Mears
,
L.
, and
Kurfess
,
T.
, 2010, “
Quality and Inspection of Machining Operations-Tool Condition Monitoring
,”
ASME J.Manuf. Sci. Eng.
,
132
(
4
), pp.
041015(1
16)
.
22.
Teti
,
R.
,
Jemielniak
,
K.
,
O’Donnell
,
G.
, and
Dornfeld
,
D.
, 2010, “
Advanced Monitoring of Machining Operations
,”
CIRP Ann.—Manuf. Technol.
,
59
(
2
), pp.
717
739
.
23.
Li
,
X.
,
Tso
,
S. K.
, and
Wang
,
J.
, 2000, “
Real-Time Tool Condition Monitoring Using Wavelet Transforms and Fuzzy Techniques
,”
IEEE Trans. Syst., Man, Cybern.-C: Appl. Rev.
,
30
(
3
), pp.
352
357
.
24.
Camci
,
F.
, and
Chinnam
,
R. B.
, 2010, “
Health-State Estimation and Prognostics in Machine Processes
,”
IEEE Trans. Autom. Eng.
,
7
(
3
), pp.
581
597
.
25.
Daubechies
,
J.
, 1988, “
Orthonormal Bases of Compact Supported Wavelets
,”
Commun. Pure Appl. Math.
,
41
(
7
), pp.
909
996
.
26.
Yan
,
R.
, and
Gao
,
R. X.
, 2009, “
Base Wavelet Selection for Bearing Vibration Signal Analysis
,”
Int. J. Wavelets Multiresolut. Inform. Process.
,
7
(
4
), pp.
411
426
.
27.
Fu
,
S.
,
Muralikrishnan
,
B.
, and
Raja
,
J.
, 2003 “
Engineering Surface Analysis With Different Wavelet Bases
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
844
852
.
28.
Tansel
,
I.
,
Mekdeci
,
C.
, and
Mclaughlin
,
C.
, 1995, “
Detection of Tool Failure in End Milling With Wavelet Transformations and Neural Networks (WT–NN)
,”
Int. J. Mach. Tools Manuf.
,
35
(
8
), pp.
1137
1147
.
29.
Li
,
X.
, and
Du
,
R.
, 2004, “
Monitoring Machining Processes Based on Discrete Wavelet Transform and Statistical Process Control
,”
Int. J. Wavelets Multiresolut. Inform. Process.
,
2
(
3
), pp.
299
311
.
30.
Zhu
,
K.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
, 2009, “
Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
537
553
.
31.
Lee
,
D. S.
, 2005, “
Effective Gaussian Mixture Learning for Video Background Subtraction
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
5
), pp.
827
832
.
32.
Stauffer
,
C.
, and
Grimson
,
W. E. L.
, 1999, “
Adaptive Background Mixture Models for Real-Time Tracking
,”
Proceeding of Conference Vision and Pattern Recognition 1999 (CVPR99)
,
Fort Collins, CO
, June, 2, pp.
246
252
.
33.
Dempster
,
A. P.
,
Laird
,
N. M.
, and
Rubin
,
D. B.
, 1977, “
Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm
,”
J. R. Stat. Soc.
,
39
(
1
), pp.
1
38
.
34.
Ueda
,
N.
,
Nakano
,
R.
,
Ghahramani
,
Z.
, and
Hinton
,
G. E.
, 2000, “
SMEM Algorithm for Mixture Models
,”
Neural Comput.
,
12
(
9
), pp.
131
144
.
35.
Zhang
,
B.
,
Zhang
,
C.
, and
Yi
,
X.
, 2004, “
Competitive EM Algorithm for Finite Mixture Models
,”
Pattern Recognit.
,
37
(
1
), pp.
131
144
.
36.
Goldberger
,
J.
,
Gordon
,
S.
, and
Greenspan
,
H.
, 2003, “
An Efficient Image Similarity Measure Based on Approximations of KL-Divergence between Two Gaussian Mixtures
,”
Proceedings of the 9th IEEE International Conference on Computer Vision (ICCV’03)
,
Nice, France
, Oct., 1, pp.
487
493
.
37.
Goebel
,
K.
, 1996, “
Management of Uncertainty in Sensor Validation, Sensor Fusion, and Diagnosis of Mechanical Systems using Soft Computing Techniques
,” Ph.D. thesis, Department of Mechanical Engineering, University of California at Berkeley.
38.
Agogino
,
A.
, and
Goebel
,
K.
, 2007, “
 “Mill Data Set
,”
BEST lab, UC Berkeley
.
NASA Ames Prognostics Data Repository,” NASA Ames
,
Moffett Field, CA
, http://ti.arc.nasa.gov/project/prognostic-data-repository.
You do not currently have access to this content.