This paper presents a novel technique to estimate the temperature distribution of a milling tool during machining. In this study, heat generation during the machining process is estimated using cutting forces. We consider the heat to be time-dependent heat flux into the tool. In the proposed model, we discretize each rake face on a mill into several elements; each experiences time-dependent heat flux. Second, we calculate the time-dependent heat flux as several constant heat input starts at different time. Finally, we sum the temperature rise from each heat flux to obtain the overall temperature change. A similar concept is applied on the flank surface, where the flank wear area is modeled as an additional heat generation zone. Experimental results are presented to validate the developed model.

References

References
1.
Da Silva
,
M. B.
, and
Wallbank
,
J.
, 1999, “
Cutting Temperature: Prediction and Measurement Methods—A Review
,”
J. Mater. Process. Technol.
,
88
(
1
), pp.
195
202
.
2.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2000, “
Thermal Modeling of the Metal Cutting Process Part I—Temperature Rise Distribution due to Shear Plane Heat Source
,”
Int. J. Mech. Sci.
,
42
, pp.
1715
1752
.
3.
Komanduri
,
R.
, and
Hou
,
Z. B.
, 2000, “
Thermal Modeling of the Metal Cutting Process Part II—Temperature Rise Distribution due to Frictional Heat Source at the Tool-Chip Interface
,”
Int. J. Mech. Sci.
,
43
, pp.
57
88
.
4.
Abukhshim
,
N. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
, 2006, “
Heat Generation and Temperature Prediction in Metal Cutting: A Review and Implications for High Speed Machining
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
782
800
.
5.
Okushim
,
K.
, and
Hoshi
,
T.
, 1963, “
Thermal Crack in Carbide Face-Milling Cutter—2nd Report. Its Significance as Cause of Tool Failures
,”
Bull. JSME
,
6
(
22
), pp.
317
326
6.
Bhatia
,
S. M.
,
Pandey
,
P. C.
, and
Shan
,
H. S.
, 1980, “
The Thermal Condition of the Tool Cutting Edge in Intermittent Cutting
,”
Wear
,
61
, pp.
21
30
.
7.
Wu
,
H.
, and
Mayer
,
J. E.
, 1979, “
Analysis of Thermal Cracking of Carbide Tools in Intermittent
,”
ASME J. Eng. Ind.
,
101
(
2
), pp.
159
164
.
8.
Chakraverti
,
G.
,
Pandey
,
P. C.
, and
Mehta
,
N. K.
, “
Analysis of Tool Temperature Fluctuation in Interrupted Cutting
,”
Precis. Eng.
,
6
(
2
), pp.
99
105
.
9.
Stephenson
,
D. A.
, and
Ali
,
A.
, 1992, “
Tool Temperature in Interrupted Metal Cutting
,”
ASME. J. Eng. Ind.
,
114
, pp.
127
136
.
10.
Radulescu
,
R.
, and
Kapoor
,
S. G.
, 1994, “
An Analytical Model for Prediction of Tool Temperature Fields During Continuous and Interrupted Cutting
,”
ASME. J. Eng. Ind.
,
116
(
2
), pp.
135
143
.
11.
Lazoglu
,
I.
, and
Altintas
,
Y.
, 2002, “
Prediction of Tool and Chip Temperature in Continuous and Interrupted Machining
,”
Int. J. Mach. Tools Manuf.
,
42
, pp.
1011
1022
.
12.
Dawson
,
P. R.
, and
Malkin
,
S.
, 1984, “
Inclined Moving Heat Source Model for Calculating Metal Cutting Temperatures
,”
ASME. J. Eng. Ind.
,
106
, pp.
179
186
.
13.
Childs
,
T. H. C.
,
Maekawa
,
K.
, and
Maulik
,
P.
, 1988, “
Effects of Coolant on Temperature Distribution in Metal Machining
,”
Mater. Sci. Technol.
,
4
, pp.
1006
1019
.
14.
Berliner
,
E. M.
, and
Krainov
,
V. P.
, 1991, “
Analytical Calculations of the Temperature Field and Heat Flows on the Tool Surface in Metal Cutting due to Sliding Friction
,”
Wear
,
143
, pp.
379
395
.
15.
Li
,
X.
, 1996, “
Study of Jet-Flow Rate of Cooling in Machining Part 1. Theoretical Analysis
,”
J. Mater. Process. Technol.
,
62
, pp.
149
156
.
16.
Li
,
X.
, 1996, “
Study of Jet-Flow Rate of Cooling in Machining Part 2. Simulation Study
,”
J. Mater. Process. Technol.
,
62
, pp.
157
165
.
17.
Kline
,
W. A.
,
eVor
,
R. E.
, and
Lindberg
,
J. R.
, 1982, “
The Prediction of Cutting Forces in End Milling With Application to Cornering Cuts
,”
Int. Mach. Tool Des. Res.
,
22
(
1
), pp.
7
22
.
18.
Lee
,
P.
, and
Altintas
,
Y.
, 1996, “
Prediction of Ball-End Milling Forces From Orthogonal Cutting Data
,”
Int. J. Mach. Tools Manuf.
,
36
(
9
), pp.
684
692
.
19.
Shatla
,
M.
, and
Altan
,
T.
, 2000, “
Analytical Modeling of Drilling and Ball End Milling
,”
J. Mater. Process. Technol.
,
98
, pp.
125
133
.
20.
Bono
,
M.
, and
Ni
,
J.
, 2006, “
The Location of the Maximum Temperature on the Cutting Edges of a Drill
,”
Int. J. Mach. Tools Manuf.
,
46
, pp.
901
907
.
21.
Chandrasekharan
,
V.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1995, “
Mechanistic Approach to Predicting the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials
,”
ASME J. Eng. Ind.
,
117
(
4
), pp.
559
570
.
22.
Merchant
,
M. E.
, 1944, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
A
-168–A-
175
.
23.
Loewen
,
E. G.
, and
Shaw
,
M. C.
, 1954, “
On the Analysis of the Cutting-Tool Temperatures
,”
Trans. ASME
,
76
, pp.
217
231
.
24.
Smithey
,
D. W.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2000, “
A Worn Tool Force Model for Three-Dimensional Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
40
, pp.
1929
1950
.
25.
Holman
,
J. P.
, 1992,
Heat Transfer
,
McGraw-Hill
,
New York
.
26.
Meyer
,
K.
, 2007, “
Milling Tool Performance Analysis in High Speed Milling of Titanium Alloys
,” Master thesis, University of Michigan, Ann Arbor, MI.
27.
Smart
,
E. F.
, and
Trent
,
E. M.
, 1975, “
Temperature Distribution in Tools Used for Cutting Iron, Titanium and Nickel
,”
Int. J. Prod. Res.
,
13
(
3
), pp.
265
290
.
28.
Bono
,
M.
, and
Ni
,
J.
, 2002, “
A Method for Measuring the Temperature Distribution Along the Cutting Edges of a Drill
,”
ASME. J. Manuf. Sci. Eng.
,
124
, pp.
921
923
.
29.
Stephenson
,
D. A.
, 1991, “
Assessment of Steady-State Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data
,”
ASME J. Eng. Ind.
,
113
, pp.
121
128
.
30.
Agaiou
,
J. S.
, and
Stephenson
,
D. A.
, 1994, “
Analytical and Experimental Studies of Drill Temperature
,”
Trans. ASME
,
116
, pp.
54
60
.
You do not currently have access to this content.