The distinct element method (or discrete element method, DEM) is applied to simulate the dynamic process of laser-assisted machining (LAM) of silicon nitride ceramics. This is motivated by the fact that LAM of ceramics shows a few complicated characteristics such as spontaneous crack formation, discontinuous chips, etc. Thus, using the two-dimensional distinct element code, PFC2D, the microstructure of a β-type silicon nitride ceramic is modeled, and the resulting temperature-dependent synthetic specimens are created first, and then, machining simulations are conducted. The DEM model is validated through comparing the predicted results with those from the experiments under different cutting temperatures in terms of cutting force, chip size, and depth of subsurface damage. Furthermore, the mechanisms of LAM are analyzed from the aspects of material removal, chip segments, surface/subsurface damage, as well as crack initiation, propagation, and coalescence.

References

References
1.
König
,
W.
, and
Zaboklicki
,
A. K.
, 1993, “
Laser-Assisted Hot Machining of Ceramics and Composite Materials
,”
NIST Spec. Publ.
,
847
, pp.
455
463
.
2.
Rozzi
,
J. C.
,
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
, 1998, “
Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to a Translating Laser Heat Source, Part I: Comparison of Surface Temperature Measurements with Theoretical Results
,”
ASME J. Heat Transfer
,
120
(
4
), pp.
899
905
.
3.
Lei
,
S.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2001, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
123
, pp.
639
646
.
4.
Rebro
,
P. A.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2004, “
Design of Operating Conditions for Crackfree Laser-Assisted Machining of Mullite
,”
Int. J. Mach. Tools Manuf.
,
44
(
7–8
), pp.
677
694
.
5.
Pfefferkorn
,
F. E.
,
Incropera
,
F. P.
, and
Shin
,
Y. C.
, 2005, “
Heat Transfer Model of Semi-Transparent Ceramics Undergoing Laser-Assisted Machining
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1999
2012
.
6.
Tian
,
Y.
, and
Shin
,
Y. C.
, 2006, “
Thermal Modeling for Laser-Assisted Machining of Silicon Nitride Ceramics with Complex Features
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
425
34
.
7.
Westkäemper
,
E.
, 1995, “
Grinding Assisted by Nd:YAG Lasers
,”
CIRP Ann.
,
44
(
1
), pp.
317
320
.
8.
Marinescu
,
I. D.
, 1998, “
Laser-Assisted Grinding of Ceramics
,”
Interceram
,
47
(
5
), pp.
314
316
.
9.
Chang
,
C. W.
, and
Kuo
,
C. P.
, “2007,
An Investigation of Laser-Assisted Machining of Al2O3 Ceramics Planing
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
452
461
.
10.
Yang
,
B.
,
Deines
,
T. W.
,
Geist
,
C. M.
, and
Lei
,
S.
, 2007, “
An Experimental Study of Laser Assisted Milling of Silicon Nitride Ceramic
,”
Trans. North Am. Manuf. Res. Inst. SME
,
35
, pp.
473
480
.
11.
Tian
,
Y.
,
Wu
,
B.
,
Anderson
M.
, and
Shin
,
Y. C.
, 2008, “
Laser-Assisted Milling of Silicon Nitride Ceramics and Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031013
.
12.
Zhang
,
G.
, and
Cao
,
Y.
, 2000, “
A Computational Approach to Evaluate Surface Integrity of Glass Ceramics
,”
Trans. NAMRI/SME
,
28
, pp.
279
284
.
13.
Kumbera
,
T. G.
,
Cherukuri
,
H. P.
,
Patten
,
J. A.
,
Brand
,
C. J.
, and
Marusich
,
T. D.
, 2001, “
Numerical Simulations of Ductile Machining of Silicon Nitride With a Cutting Tool of Defined Geometry
,”
Mach. Sci. Technol.
,
5
(
3
), pp.
341
352
.
14.
Ajjarapu
,
S. K.
,
Fesperman
,
R. R.
,
Patten
,
J. A.
, and
Cherukuri
,
H. P.
, 2004, “
Experimental and Numerical Investigation of Ductile Regime Machining of Silicon Nitride
,”
AIP Conf. Proc.
,
712
, pp.
1377
1383
.
15.
Liu
,
X.
, and
Zhang
,
B.
, 2002, “
Machining Simulation for Ceramics Based on Continuum Damage Mechanics
,”
ASME J. Manuf. Sci. Eng.
,
124
(
3
), p
553
561
.
16.
Tian
,
Y.
, and
Shin
,
Y. C.
2007, “
Multiscale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
287
295
.
17.
Marshall
,
D. B.
,
Evans
,
A. G.
,
Khuri Yakub
,
B. T.
,
Tien
,
J. W.
, and
Kino
,
G. S.
, 1983, “
The Nature of Machining Damage in Brittle Materials
,”
Proc. R. Soc. London, Ser. A
,
385
(1789), pp.
463
477
.
18.
Subramanian
,
K.
,
Ramanath
,
S.
, and
Tricard
,
M.
, 1997, “
Mechanisms of Material Removal in the Precision Production Grinding of Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4(A)
), pp.
509
519
.
19.
Liang
,
S. X.
, and
Devereux
,
O. F.
, 1993, “
Grinding of Ceramic Materials: A Model for Energy Consumption and Force Transformation
,”
NIST Spec. Publ.
,
847
, pp.
21
31
.
20.
Komanduri
,
R.
, and
Raff
,
L. M.
, 2001, “
A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale
,”
Proc. Inst. Mech. Eng., Part B
,
215
, pp.
1639
1672
.
21.
Rühle
,
M.
, 1985, “
Ceramic Microstructures and Properties
,”
J. Vac. Sci. Technol. A
,
3
(
3
), pp.
749
756
.
22.
Lee
,
W. E.
, and
Rainforth
,
W. M.
, 1994,
Ceramic Microstructures Property Control by Processing
,
Chapman and Hall
,
New York
.
23.
Cundall
,
P. A.
, 1971, “
A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems
,”
Proceedings of the Symposium of the International Society of Rock Mechanics
,
Nancy
,
France
, 1971, Vol. 1, Paper No. II-8.
24.
Huang
,
H. Y.
, 1999, “
Discrete Element Modeling of Tool-Rock Interaction
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
25.
Kaitkay
,
P.
, and
Lei
,
S.
, 2005, “
Experimental Study of Rock Cutting Under External Hydrostatic Pressure
,”
J. Mater. Process. Technol.
,
159
(
2
), pp.
206
213
.
26.
Ledgerwood
,
R.
, 2007, “
PFC Modeling of Rock Cutting Under High Pressure Conditions
,”
Rock Mechanics: Meeting Society’s Challenges and Demands, Proceedings of the 1st Canada-US Rock Mechanics Symposium
,
Vancouver, Canada
, pp.
511
518
.
27.
Lei
,
S.
, and
Yang
,
B.
, 2005, “
Distinct Element Simulation of Ceramic Machining: Material Removal Mechanism
,”
Trans. North Am. Manuf. Res. Inst. SME
,
33
, pp.
485
492
28.
Shen
,
X.
, and
Lei
,
S.
, 2005, “
Distinct Element Simulation of Laser Assisted Machining of Silicon Nitride Ceramics: Surface/Subsurface Cracks and Damage
,”
American Society of Mechanical Engineers, Manufacturing Engineering Division, MED
,
16–2
, pp.
1267
1274
.
29.
Tan
,
Y.
,
Yang
,
D.
, and
Sheng
,
Y.
, 2008, “
Study of Polycrystalline Al2O3 Machining Cracks Using Discrete Element Method
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
975
982
.
30.
Shen
,
X.
, and
Lei
,
S.
, 2009, “
Cutting Simulation of Laser Assisted Milling of Silicon Nitride Ceramics Using PFC2D
, ”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference MSEC2009
,
West Lafayette, IN
.
31.
Itasca Consulting Group, Inc., 2002, —PFC2D Manual-FISH, Command, Theory and Background, V3.0, Minneapolis, MN.
32.
Hampshire
,
S.
, 1991, “
Engineering Properties of Nitrides
,”
Ceramics and Glasses, Engineered Materials Handbook
,
ASM International, Materials Park, OH
,
4
, pp.
812
820
.
33.
Falk
,
L. K. L.
,
Schneider
,
N.
,
Menke
,
Y.
, and
Hampshire
,
S.
, 2007, “
The Intergranular Oxynitride Microstructure in Silicon Nitride Based Ceramics
,”
Mater. Sci. Forum
,
554
, pp.
113
118
.
34.
Rouxel
,
T.
, 2002, “
Young’s Modulus and Fracture Toughness of Silicon Nitride Ceramics at Elevated Temperature
,”
Mater. Sci. Forum
,
383
, pp.
3
11
.
35.
Petzow
,
G.
, and
Greil
,
P.
, 1988, “
Dense Silicon Nitride Processing, Properties and Applications
,”
Powder Metallurgy and Related High Temperature Materials: Proceedings of the 4th International Conference
,
P.
,
Ramakrishnan
, ed.,
Trans Tech Publications
,
Bombay
.
36.
Wiederhorn
,
S. M.
,
Fields
,
A. B.
, and
Hockey
,
B. J.
, 1994, “
Fracture of Silicon Nitride and Silicon Carbide at Elevated Temperatures
,”
Mater. Sci. Eng. A
,
A176
(
1–2
), pp.
51
60
.
37.
Fok
,
S. L.
,
Mitchell
,
B. C.
,
Smart
,
J.
, and
Marsden
,
B. J.
, 2001, “
A Numerical Study on the Application of the Weibull Theory to Brittle Materials
,”
Eng. Fract. Mech.
,
68
(
10
), pp.
1171
1179
.
38.
Mutoh
,
Y.
,
Yamaishi
,
K.
,
Miyahara
,
N.
, and
Oikawa
,
T.
, 1992, “
Brittle-to-Ductile Transition in Silicon Nitride
,”
Fract. Mech. Ceram.
,
10
, pp.
427
40
.
39.
Shen
,
X.
, and
Lei
,
S.
, 2009, “
Thermal Modeling and Experimental Investigation for Laser Assisted Milling of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051007
.
40.
Young
,
H.
,
Mathew
,
P.
, and
Oxley
,
P. L. B.
, 1994, “
Predicting Cutting Forces in Face Milling
,”
Int. J. Mach. Tools Manuf.
,
34
(
6
), pp.
771
783
.
41.
Arsecularatne
,
J. A.
,
Mathew
,
P.
, and
Oxley
,
P. L. B.
, 1995, “
Prediction of Chip Flow Direction and Cutting Forces in Oblique Machining With Nose Radius Tools
,”
Proc. Inst. Mech. Eng., Part B
,
209
(
B4
), pp.
305
315
.
42.
Chadwick
,
M. M.
,
Jupp
,
R. S.
, and
Wilkinson
,
D. S.
, 1993, “
Creep Behavior of a Sintered Silicon Nitride
,”
J. Am. Ceram. Soc.
,
76
(
2
), pp.
385
396
.
43.
Wiederhorn
,
S. M.
, 1999, “
High Temperature Deformation of Silicon Nitride
,”
Z. Metallkd.
,
90
(
12
), pp.
1053
1058
.
44.
Yang
,
B.
,
Shen
,
X.
, and
Lei
,
S.
, 2009, “
Mechanisms of Edge Chipping in Laser-Assisted Milling of Silicon Nitride Ceramics
,”
Int. J. Mach. Tools Manuf.
,
49
(
3–4
), pp.
344
350
.
You do not currently have access to this content.