This work presents an analysis of the plate drawing processes carried out in converging dies. The analysis has been made by the upper bound method (UBM), modeling the plastic deformation zone by triangular rigid zones (TRZ), and considering that the processes occur under plane strain and partial friction conditions. The goal is to evaluate how the work-hardening suffered by materials when they are cold-worked affects the energy required to carry out a certain process. In order to achieve this objective, the paper proposes a simplified model for calculating the shear yield stress, k, along the contact surface between die and material when theoretical work-hardening materials are used. The results obtained with this simplified procedure do not differ significantly from those obtained with the complete model, even in the more drastic conditions tried. This result confirms that the simplified model can successfully substitute for the complete model with less calculation.

References

References
1.
Rao
,
K. P.
,
Doraivelu
,
S. M.
, and
Gopinathan
,
V.
, 1982, “
Flow Curves and Deformation of Materials at Different Temperatures and Strains Rates
,”
J. Mech. Work. Technol.
,
6
, pp.
63
88
.
2.
Tian
,
H.
, and
Kang
,
D.
, 2003, “
A Study on Determining Hardening Curve for Sheet Metal
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
1253
1257
.
3.
Rubio
,
E. M.
,
Camacho
,
A. M.
,
González
,
C.
, and
Sebastián
,
M. A.
, 2009, “
Improved Triangular Rigid Zones Model for the Analysis of the Plates Drawing Made of Work-Hardening Materials
,”
Proceedings of the 6th ICME International Conference
,
R.
Teti
, ed.,
University of Naples
,
Naples, Italy
, July
23
25
.
4.
Rubio
,
E. M.
,
Camacho
,
A. M.
,
Marcos
,
M.
, and
Sebastian
,
M. A.
, 2009, “
Analysis of the Energy Vanished by Friction in Tube Drawing Processes With a Fixed Conical Inner Plug by the Upper Bound Method
,”
Mater. Manuf. Processes.
,
23
(
7
), pp.
690
697
.
5.
Hollomon
,
J. H.
, and
Jaffe
,
L. D.
, 1945, “
Time-Temperature Relationships in Tempering Steel
,”
Trans. Metall. Soc. AIME
,
162
, pp.
223
249
.
6.
Hill
,
R.
, 1950,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
.
7.
Ludwik
,
P.
, 1909,
Elemente Der Technologischen
,
Springer-Verlag OHG
,
Berlin
.
8.
Rowe
,
G. W.
, 1977,
Conformado de Metales
,
Urmo
,
Bilbao
.
9.
Avitzur
,
B.
, 1980,
Metal Forming: The Application of Limit Analysis
,
Marcel Dekker
,
New York
, p.
224
.
10.
Avitzur
,
B.
, 1983,
Handbook of Metalforming Processes
,
John & Wiley
,
New York
.
11.
Talbert
,
S. H.
, and
Avitzur
,
B.
, 1996,
Element Mechanics of Plastic Flow in Metal Forming
,
John Wiley & Sons
,
New York
.
12.
Hosford
,
W. F.
, and
Caddell
,
R. M.
, 1983,
Metal Forming—Mechanics and Metallurgy
,
Prentice Hall
,
NJ.
13.
Johnson
,
W.
, and
Mellor
,
P. B.
, 1983,
Engineering Plasticity
,
Ellis Horwood
,
Chichester, England
.
14.
Rubio
,
E. M.
,
Sebastián
,
M. A.
, and
Sanz
,
A.
, 2003, “
Mechanical Solutions for Drawing Processes Under Plane Strain Conditions by the Upper Bound Method
,”
J. Mater. Process. Technol.
,
143 144–
(
20
), pp.
539
545
.
15.
Yang
,
D. Y.
,
Kim
,
Y. G.
, and
Lee
,
C. M.
, 1991, “
An Upper-Bound Solution for Axisymmetric Extrusion of Composite Rods Through Curved Dies
,”
Int. J. Mach. Tools Manuf.
,
31
(
4
), pp.
565
575
.
16.
Wang
,
J. P.
, and
Lin
,
Y. T.
, 1995, “
The UBST Approach to the Stress Analysis of Plane-Strain Upsetting
,”
Int. J. Mach. Tools Manuf.
,
35
(
4
), pp.
607
618
.
17.
Choi
,
J. C.
, and
Choi
,
Y.
, 1998, “
A Study on the Forging of External Spur Gears: Upper-Bound Analyses and Experiments
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1193
1208
.
18.
Lee
,
R. S.
, and
Kwan
,
C. T.
, 1997, “
Upper-Bound Elemental Technique (UBET) With Convex Circular Parallelepiped and Convex Spherical Elements for Three-Dimensional Forging Analysis
,”
Int. J. Mach. Tools Manuf.
,
37
(
8
), pp.
1053
1067
.
19.
Shivpuri
,
R.
, and
Chou
,
P. C.
, 1989, “
A Comparative Study of Slab, Upper Bound and Finite Element Methods for Predicting Force and Torque in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
29
(
3
), pp.
305
322
.
20.
Lin
,
Y. T.
, and
Wang
,
J. P.
, 1993, “
A New Upper-Bound Elemental Technique Approach to Axisymmetric Metal Forming Processes
,”
Int. J. Mach. Tools Manuf.
,
33
(
2
), pp.
135
151
.
21.
Bhutta
,
M. A.
, and
Chitkara
,
N. R.
, 2001, “
Dynamic Forging of Splines and Spur Gear Forms: A Modified Upper Bound Analysis that Includes the Effects of Inertia and Some Experiments
,”
Int. J. Adv. Manuf. Technol.
,
18
(
3
), pp.
176
192
.
22.
Moshksar
,
M. M.
, and
Kalvarzi
,
A. H.
, 2001, “
Ironing of Aluminium Cups
,”
Mater. Manuf. Processes
,
16
(
4
), pp.
461
470
.
23.
Mahdavian
,
S. M.
, and
Fion
,
T. M. Y.
, 2007, “
Effect of Punch Geometry in the Deep Drawing Process of Aluminium
,”
Mater. Manuf. Processes
,
22
(
7
),
898
902
.
24.
Rubio
,
E. M.
,
Domingo
,
R.
,
Arenas
,
J. M.
, and
González
,
C.
, 2004, “
Energetic Analysis of the Drawing Process by Upper-Bound Techniques
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1220
1226
.
25.
Rubio
,
E. M.
,
Domingo
,
R.
,
González
,
C.
, and
Sanz
,
A.
, 2004, “
Comparative Analysis of Triangular Rigid Zones Models in the Mechanical Study of the Drawing Process by Upper Bound
,”
Rev. Metall. Madrid.
,
40
(
2
), pp.
90
100
.
26.
Rubio
,
E. M.
,
Marín
,
M.
,
Domingo
,
R.
, and
Sebastián
,
M. A.
, 2008, “
Analysis of the Plate Drawing Processes by the Upper Bound Method Using Theoretical Work-Hardening Materials
,”
Int. J. Adv. Manuf. Technol.
,
40
(
2–3
), pp.
261
269
.
You do not currently have access to this content.