In spite of the success of the stream of variation (SoV) approach to modeling variation propagation in multistation machining processes (MMPs), the absence of machining-induced variations could be an important factor that limits its application in accurate variation prediction. Such machining-induced variations are caused by geometric-thermal effects, cutting-tool wear, etc. In this paper, a generic framework for machining-induced variation representation based on differential motion vectors is presented. Based on this representation framework, machining-induced variations can be explicitly incorporated in the SoV model. An experimentation is designed and implemented to estimate the model coefficients related to spindle thermal-induced variations and cutting-tool wear-induced variations. The proposed model is compared with the conventional SoV model resulting in an average improvement on quality prediction of 67%. This result verifies the advantage of the proposed extended SoV model. The application of the new model can significantly extend the capability of SoV-model-based methodologies in solving more complex quality improvement problems for MMPs, such as process diagnosis and process tolerance allocation, etc.

References

1.
Shi
,
J.
, 2007,
Stream of Variation Modeling and Analysis for Multistage,
CRC Press/Taylor&Francis Group
,
Boca Raton, FL.
2.
Montgomery
,
D. C.
, 1996,
Introduction to Statistical Quality Control,
John Wiley & Sons
,
Hoboken, NJ.
3.
Jin
,
J.
, and
Shi
,
J.
, 1999, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
756
762
.
4.
Huang
,
W.
,
Lin
,
J.
, and
Kong
,
Z.
, 2007, “
Stream-of-Variation (SOVA) Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multi-Station Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
832
842
.
5.
Liu
,
J.
,
Jin
,
J.
, and
Shi
,
J.
, 2010, “
State Space Modeling for 3-D Variation Propagation in Rigid-Body Multistage Assembly Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
2
), pp.
274
290
.
6.
Huang
,
Q.
,
Shi
,
J.
, and
Yuan
,
J.
, 2003, “
Part Dimensional Model Error and its Propagation Modeling in Multi-Operational Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
255
262
.
7.
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2003, “
Dimensional Errors of Fixtures, Locating and Measurement Datum Features in the Stream of Variation Modeling in Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
716
730
.
8.
Zhou
,
S.
,
Huang
,
Q.
, and
Shi
,
J.
, 2003, “
State Space Modeling of Dimensional Variation Propagation in Multistage Machining Process Using Differential Motion Vectors
,”
IEEE Trans. Rob. Autom.
,
19
(
2
), pp.
296
309
.
9.
Abellan-Nebot
,
J. V.
,
Liu
,
J.
, and
Romero
,
F.
, 2009, “
Limitations of the Current State Space Modeling Approach in Multistage Machining Processes Due to Operation Variations
,”
AIP Conf. Proc.
,
1181
(
1
), pp.
231
243
.
10.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A Review Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1235
1256
.
11.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
, 2000, “
Error Compensation in Machine Tools—A Review Part II: Thermal Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1257
1284
.
12.
Chen
,
J. S.
,
Yuan
,
J.
, and
Ni
,
J.
, 1996, “
Thermal Error Modelling for Real-Time Error Compensation
,”
Int. J. Adv . Manuf. Technol.
,
12
, pp.
266
275
.
13.
Baradie
,
M. A. E.
, 1996, “
The Effect of Varying the Workpiece Diameter on the Cutting Tool Clearance Angle in Tool-Life Testing
,”
Wear
,
195
(
1
-2), pp.
201
205
.
14.
Suh
,
S.-H.
,
Lee
,
E.-S.
, and
Jung
,
S.-Y.
, 1998, “
Error Modelling and Measurement for the Rotary Table of Five-Axis Machine Tools
,”
Int. J. Adv . Manuf. Technol.
,
14
, pp.
656
663
.
15.
Lei
,
W. T.
, and
Hsu
,
Y. Y.
, 2002, “
Accuracy Test of Five-Axis CNC Machine Tool With 3D Probe-Ball. Part I: Design and Modeling
,”
Int. J. Mach. Tools Manuf.
,
42
(
10
), pp.
1153
1162
.
16.
Kim
,
G. M.
,
Kim
,
B. H.
, and
Chu
,
C. N.
, 2003, “
Estimation of Cutter Deflection and Form Error in Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
43
, pp.
917
924
.
17.
Dow
,
T. A.
,
Miller
,
E. L.
, and
Garrard
,
K.
, 2004, “
Tool Force and Deflection Compensation for Small Milling Tools
,”
Precis. Eng.
,
28
, pp.
31
45
.
18.
López de Lacalle
,
L. N.
,
Lamikiz
,
A.
,
Sanchez
,
J. A.
, and
Salgado
,
M. A.
, 2004, “
Effects of Tool Deflection in the High-Speed Milling of Inclined Surfaces
,”
Int. J. Adv . Manuf. Technol.
,
24
, pp.
621
631
.
19.
Bi
,
X.
,
Liu
,
Y.
, and
Liu
,
Y.
, 2009, “
Analysis and Control of Dimensional Precision in Turning Process
,”
Proceedings of Control and Decision Conference
, pp.
3456
3459
.
20.
Joshi
,
P.
, 2003,
Jigs and Fixtures Design Manual,
McGraw-Hill
,
New York
.
21.
Paul
,
R.
, 1981,
Robot Manipulator: Mathematics, Programming, and Control,
MIT Press, Cambridge
,
MA
.
22.
Choi
,
J. P.
,
Lee
,
S. J.
, and
Kwon
,
H. D.
, 2003, “
Roundness Error Prediction With a Volumetric Error Model Including Spindle Error Motions of a Machine Tool
,”
Int. J. Adv . Manuf. Technol.
,
21
, pp.
923
928
.
23.
Chen
,
G.
,
Yuan
,
J.
, and
Ni
,
J.
, 2001, “
A Displacement Measurement Approach for Machine Geometric Error Assessment
,”
Int. J. Mach. Tools Manuf.
,
41
(
1
), pp.
149
161
.
24.
Yang
,
S. H.
,
Kim
,
K. H.
,
Park
,
Y. K.
, and
Lee
,
S. G.
, 2004, “
Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Centre Using a Hemispherical Helix Ball Bar Test
,”
Int. J. Adv . Manuf. Technol.
,
23
, pp.
495
500
.
25.
Tseng
,
P. C.
, 1997, “
A Real-Time Thermal Inaccuracy Compensation Method on a Machining Centre
,”
Int. J. Adv . Manuf. Technol.
,
13
(
3
), pp.
182
190
.
26.
Haitao
,
Z.
,
Jianguo
,
Y.
, and
Jinhua
,
S.
, 2007, “
Simulation of Thermal Behavior of a CNC Machine Tool Spindle
,”
Int. J. Mach. Tools Manuf.
,
47
(
6
), pp.
1003
1010
.
27.
Gere
,
J. M.
, and
Goodno
,
B. J.
, 2008,
Mechanics of Materials,
7th ed.,
Nelson Engineering
,
Toronto
.
28.
ISO 8688-1:1989, Tool-Life Testing in Milling—Part 1: Face Milling.
29.
Warnecke
,
G.
, and
Kluge
,
R.
, 1998, “
Control of Tolerances in Turning by Predictive Control With Neural Networks
,”
J. Intell. Manuf.
,
9
(
4
), pp.
281
287
.
30.
Sheikh
,
A. K.
,
Raouf
,
A.
,
Sekerdey
,
U. A.
, and
Younas
,
M.
, 1999, “
Optimal Tool Replacement and Resetting Strategies in Automated Manufacturing Systems
,”
Int. J. Prod . Res.
,
37
(
4
), pp.
917
937
.
You do not currently have access to this content.