Biofuels derived from cellulosic biomass offer an alternative to petroleum-based liquid transportation fuels. In order to convert cellulosic biomass into biofuels, size reduction is a necessary step along with pretreatment, enzymatic hydrolysis, and fermentation. In the literature, there are inconsistent reports about why size reduction affects sugar yield (proportional to biofuel yield). An important reason for the inconsistence is that particle formation in current size reduction methods is not well controlled, causing effects of some biomass structural parameters confounded. In this study, a metal-cutting (milling) process is used for size reduction of poplar wood, where particle formation can be well controlled to prevent the effects of multiple parameters from being confounded. The results of this study provide explanations for some inconsistent reports in the literature. These results also reveal some opportunities for future research to understand the effects of size reduction on cellulosic biofuel manufacturing.

References

References
1.
Tan
,
K. T.
,
Lee
K. T.
, and
Mohamed
,
A. R.
, 2008, “
Role of Energy Policy in Renewable Energy Accomplishment: The Case of Second-generation Bioethanol
,”
Energy Policy
,
36
, pp.
3363
3365
.
2.
U.S. Department of Energy, 2009, “
Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda
,” http://genomicscience.energy.gov/biofuels/b2bworkshop.shtml
3.
Fairfax Media, 2008, “
US Pumps More Money into Cellulosic Ethanol Research
,” http://sl.farmonline.com.au/news/nationalrural/agribusiness-and-general/general/us-pumpsmore-money-into-cellulosic-ethanol-research/1234385.aspx
4.
Perlack
,
R. D.
,
Wright
,
L. L.
,
Turhollow
,
A. F.
,
Graham
,
R. L.
,
Stokes
,
B. J.
, and
Erbach
,
D. C.
, 2005, “
Biomass as Feedstocks for a Bioenergy and Byproducts Industry: The Technical Feasibility of a Billion-ton Annual Supply
,” Oak Ridge National Laboratory, Report No. DOE/ GO-102005-2135, http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf
5.
Gray
,
K. A.
,
Zhao
,
L.
, and
Emptage
,
M.
, 2006, “
Bioethanol
,”
Curr. Opin. Chem. Biol.
,
10
, pp.
141
146
.
6.
Brown
,
L. R.
, 2008, “
Why Ethanol Production Will Drive World Food Prices Even Higher in 2008
,” http://www.earth-policy.org/index.php?/plan_b_updates/2008/update69
7.
Nigam
,
J. N.
, 2002, “
Bioconversion of Water-Hyacinth (Eichhornia crassipes) Hemicellulose Acid Hydrolysate to Motor Fuel Ethanol by Xylose-Fermenting Yeast
,”
J. Biotechnol.
,
97
(
2
), pp.
107
116
.
8.
Wyman
,
C. E.
, 1996,
Handbook on Bioethanol: Production and Utilization
,
Taylor & Francis
,
Washington, DC
.
9.
Zhu
,
L.
,
O’Dwyer
,
J. P.
,
Chang
,
V. S.
,
Granda
,
C. B.
, and
Holtzapple
,
M. T.
, 2007, “
Structural Features Affecting Biomass Enzymatic Digestibility
,”
Bioresour. Technol.
,
99
(
9
), pp.
3817
3828
.
10.
Drapcho
,
C. M.
,
Nhuan
,
N. P.
, and
Walker
,
T. H.
, 2008,
Biofuels Engineering Process Technology
, McGraw-Hill Companies, Inc., NY.
11.
Horton
,
G.
,
Rivers
,
D.
, and
Emert
,
G.
, 1980, “
Preparation of Cellulosics for Enzymatic Conversion
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
19
(
3
), pp.
422
429
.
12.
Mandels
,
M.
,
Hontz
,
L.
, and
Nystrom
,
J.
, 1974, “
Enzymatic Hydrolysis of Waste Cellulose
,”
Biotechnol. Bioeng.
,
16
(
11
), pp.
1471
1493
.
13.
Rivers
,
D.
, and
Emert
,
G.
, 1987, “
Lignocellulose Pretreatment: A Comparison of Wet and Dry Ball Attrition
,”
Biotechnol. Lett.
,
9
(
5
), pp.
365
368
.
14.
Schurz
,
J.
, 1986, “
Studies on the Enzymatic Hydrolysis of Phytomass by Cellulase From Trichoderma reesei
,”
Holzforschung
40
(
4
), pp.
225
232
.
15.
Sidiras
,
D.
, and
Koukios
,
E.
, 1989, “
Acid Saccharification of Ball-Milled Straw
,”
Biomass
19
(
4
), pp.
289
306
.
16.
Yoshida
,
M.
,
Liu
,
Y.
,
Uchida
,
S.
,
Kawarada
,
K.
,
Ukagami
,
Y.
,
Ichinose
,
H.
,
Kaneko
,
S.
, and
Fukuda
,
K.
, 2008, “
Effects of Cellulose Crystallinity, Hemicellulose, and Lignin on the Enzymatic Hydrolysis of Miscanthus sinensis to Monosaccharides
,”
Biosci., Biotechnol., Biochem.
72
(
3
), pp.
805
810
.
17.
Paulrud
,
S.
,
Mattsson
,
J.
, and
Nilsson
,
C.
, 2002, “
Particle and Handling Characteristics of Wood Fuel Powder: Effects of Different Mills
,”
Fuel Process. Technol.
76
(
1
), pp.
23
39
.
18.
Miu
,
P. I.
,
Womac
,
A. R.
,
Cannayen
,
I.
, and
Sokhansanj
,
S.
, 2006, “
Analysis of Biomass Comminution and Separation Processes in Rotary Equipment—A Review
,”
Proceedings of 2006 ASABE Annual International Meeting
, Portland, OR.
19.
Tassinari
,
T.
, and
Macy
,
C.
, 1977, “
Differential Speed Two Roll Mill Pretreatment of Cellulosic Materials for Enzymatic Hydrolysis
,”
Biotechnol. Bioeng.
19
(
9
), pp.
1321
1330
.
20.
Tassinari
,
T.
,
Macy
,
C.
,
Spano
,
L.
, and
Ryu
,
D.
, 1980, “
Energy Requirements and Process Design Considerations in Compression-Milling Pretreatment of Cellulosic Wastes for Enzymatic Hydrolysis
,”
Biotechnol. Bioeng.
22
(
8
), pp.
1689
1705
.
21.
Zhang
,
M.
,
Song
,
X. X.
,
Pei
,
Z. J.
, and
Wang
,
D. H.
, 2010, “
Effects of Mechanical Comminution on Enzymatic Conversion of Cellulosic Biomass in Biofuel Manufacturing—A Review
,”
Proceedings of 2010 International Manufacturing Science and Engineering Conference
, Erie, PA.
22.
Hakkila
,
P.
, 1989,
Utilization of Residual Forest Biomass
,
Springer-Verlag
,
Heidelberg
.
23.
Austin
,
L. G.
, 2002, “
A Treatment of Impact Breakage of Particles
,”
Powder Technol.
,
126
, pp.
85
90
.
24.
Austin
,
L. G.
, 2004, “
A Preliminary Simulation Model for Fine Grinding in High Speed Hammer Mills
,”
Powder Technol.
,
143–144
, pp.
240
252
.
25.
Fuerstenau, M. C., and Han, K. N., 2003, Principles of Mineral Processing, Society for Mining, Metallurgy, and Exploration, Inc., CO.
26.
Furnstal
,
A.
, 1935, “
A Simple Rotating Ball Mill
,”
Ind. Eng. Chem. Anal. Ed.
7
(
5
), pp.
342
343
.
28.
Klass
,
D. L.
, 1998,
Biomass for Renewable Energy, Fuels, and Chemicals
,
Academic Press
,
San Diego, CA
.
29.
Grethlein
,
H. E.
, 1985, “
The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates
,”
Nat. Biotechnol.
,
3
, pp.
155
160
.
30.
Gharpuray
,
M. M.
,
Lee
,
Y. H.
, and
Fan
,
L. T.
, 1983, “
Structural Modification of Lignocellulosics by Pretreatments to Enhance Enzymatic Hydrolysis
,”
Biotechnol. Bioeng.
,
25
, pp.
157
172
.
31.
Chang
,
V.
, and
Holtzapple
,
M.
, 2000, “
Fundamental Factors Affecting Biomass Enzymatic Reactivity
,”
Appl. Biochem. Biotechnol.
84
(
1
), pp.
5
37
.
32.
Sinitsyn
,
A. P.
,
Gusakov
,
A. V.
, and
Vlasen
,
E. Y.
, 1991, “
Effect of Structural and Physico-Chemical Features of Cellulosic Substrates on the Efficiency of Enzymatic Hydrolysis
,”
Appl. Biochem. Biotechnol.
,
30
, pp.
43
59
.
33.
Draude
,
K. M.
,
Kurniawan
,
C. B.
, and
Duff
,
S. T. B.
, 2001, “
Effect of Oxygen Delignification on the Rate and Extent of Enzymatic Hydrolysis of Lignocellulosic Material
,”
Bioresour. Technol.
,
79
, pp.
113
120
.
34.
Caulfield
,
D. E.
, and
Moore
,
W. E.
, 1974, “
Effect of Varying Crystallinity of Cellulose on Enzymic Hydrolysis
,”
Wood Sci.
,
6
, pp.
375
379
.
35.
Fan
,
L. T.
,
Lee
,
Y. H.
, and
Beardmore
,
D. H.
, 1981, “
The Influence of Major Structural Features of Cellulose on Rate of Enzymatic Hydrolysis
,”
Biotechnol. Bioeng.
,
23
, pp.
419
424
.
36.
Koullas
,
D. P.
,
Christakopoulos
,
P. F.
,
Kekos
,
D.
,
Macris
,
B. J.
, and
Koukios
,
E. G.
, 1990, “
Effect of Cellulose Crystallinity on the Enzymatic Hydrolysis of Lignocellulosics by Fusarium oxysporum Cellulases
,”
Cellul. Chem. Technol.
,
24
, pp.
469
474
.
37.
Puri
,
V. P.
, 1984, “
Effect of Crystallinity and Degree of Polymerization of Cellulose on Enzymatic Saccharification
,”
Biotechnol. Bioeng.
,
26
, pp.
1219
1222
.
38.
Vidal
,
B. C.
, Jr.
,
Dien
,
B. S.
,
Ting
,
K. C.
, and
Singh
,
V.
, 2011, “
Influence of Feedstock Particle Size on Lignocellulosic Conversion—A Review
,”
Appl. Biochem. Biotechnol.
164
(
8
), pp.
1405
1421
.
39.
Boothroyd
,
G.
, and
Knight
,
W. A.
, 2006,
Fundamentals of Machining and Machine Tools
, 3rd ed.,
CRC, Taylor & Francis Group
,
FL
.
40.
Hu
,
G.
,
Heitmann
,
J. A.
, and
Rojas
,
O. J.
, 2008, “
Feedstock Pretreatment Strategies for Producing Ethanol from Wood, Bark, and Forest Residues
,”
BioResources
3
(
1
), pp.
270
294
.
41.
Wang
,
K.
,
Jiang
,
J. X.
,
Xu
,
F.
, and
Sun
,
R. C.
, 2009, “
Influence of Steaming Pressure on Steam Explosion Pretreatment of Lespedeza Stalks (Lespedeza crytobotrya): Part 1. Characteristics of Degraded Cellulose
,”
Polym. Degrad. Stab.
,
94
, pp.
1379
1388
.
42.
Snyder
,
L. R.
,
Kirkland
,
J. J.
, and
Dolan
,
D. W.
, 2009,
Introduction to Modern Liquid Chromatography
,
John Wiley & Sons, Inc.
,
NJ
.
43.
Mendenhall
,
W.
, and
Sincich
,
T. L.
, 1995,
Statistics for Engineering and the Science
, 4th ed.,
Prentice-Hall, Inc.
,
NJ
.
You do not currently have access to this content.