Femtosecond laser pulses were focused on the interface of two glass specimens. Proper use of optical and laser processing parameters enables transmission welding. The morphology of the weld cross section was studied using differential interference contrast optical microscopy. In addition, a numerical model was developed to predict the absorption volumes of femtosecond laser pulses inside a transparent material. The model takes into account the temporal and spatial characteristics and propagation properties of the laser beam, and the transmission welding widths were subsequently compared with the absorption widths predicted by the model. The model can lead to the achievement of a desirable weld shape through understanding the effects of laser pulse energy and numerical aperture on the shape of the absorption volume. The changes in mechanical properties of the weld seams were studied through spatially resolved nanoindentation, and indentation fracture analysis was used to investigate the strength of the weld seams.

References

References
1.
Watanabe
,
W.
,
Onda
,
S.
,
Tamaki
,
T.
, and
Itoh
,
K.
, 2007, “
Joining of Transparent Materials by Femtosecond Laser Pulses
,”
Proc. SPIE
,
6460
, p.
646017
.
2.
Tamaki
,
T.
,
Watanabe
,
W.
,
Nishii
,
J.
, and
Itoh
,
K.
, 2005, “
Welding of Transparent Materials Using Femtosecond Laser Pulses
,”
Jpn J. Appl. Phys.
,
44
(
22
), pp.
L687
L689
.
3.
Watanabe
,
W.
,
Onda
,
S.
,
Tamaki
,
T.
,
Itoh
,
K.
, and
Nishii
,
J.
, 2006, “
Space-Selective Laser Joining of Dissimilar Transparent Materials Using Femtosecond Laser Pulses
,”
Appl. Phys. Lett.
,
89
(
2
), p.
021106
.
4.
Tamaki
,
T.
,
Watanabe
,
W.
, and
Itoh
,
K.
, 2006, “
Laser Micro-Welding of Transparent Materials by a Localized Heat Accumulation Effect Using a Femtosecond Fiber Laser at 1558 nm
,”
Opt. Express
,
14
(
22
), pp.
10460
10468
.
5.
Bovatsek
,
J.
,
Arai
,
A.
, and
Schaffer
,
C. B.
, 2006, “
Three-Dimensional Micromachining Inside Transparent Materials Using Femtosecond Laser Pulses: New Applications
,”
CLEO/QELS and PhAST 2006
,
CA
, pp.
8
9
.
6.
Miyamoto
,
I.
, 2007, “
Local Melting of Glass Material and Its Application to Direct Fusion Welding by Ps-Laser Pulses
,”
J. Laser Micro/Nanoeng.
,
2
(
1
), pp.
7
14
.
7.
Horn
,
A.
,
Mingareev
,
I.
,
Werth
,
A.
,
Kachel
,
M.
, and
Brenk
,
U.
, 2008, “
Investigations on Ultrafast Welding of Glass–Glass and Glass–Silicon
,”
Appl. Phys. A
,
93
(
1
), pp.
171
175
.
8.
Miyamoto
,
I.
,
Horn
,
A.
,
Gottmann
,
J.
,
Wortmann
,
D.
,
Mingareev
,
I.
,
Yoshino
,
F.
,
Schmidt
,
M.
, and
Bechtold
,
P.
, 2008, “
Novel Fusion Welding Technology of Glass Using Ultrashort Pulse Lasers
,”
Proceedings of 27th International Congress on Applications on Lasers & Electro-Optics
,
Temecula, CA
, pp.
112
121
.
9.
Borrelli
,
N.
,
Helfinstine
,
J.
,
Price
,
J.
, and
Schroeder
,
J.
, 2008, “
Glass Strengthening With an Ultrafast Laser
,”
Proceedings of 27th International Congress on Applications on Lasers & Electro-Optics
,
Temecula, CA
, pp.
185
189
.
10.
Bellouard
,
Y.
,
Colomb
,
T.
,
Depeursinge
,
C.
,
Dugan
,
M.
,
Said
,
A. A.
, and
Bado
,
P.
, 2006, “
Nanoindentation and Birefringence Measurements on Fused Silica Specimen Exposed to Low-Energy Femtosecond Pulses
,”
Opt. Express
,
14
(
18
), pp.
8360
8366
.
11.
Kongsuwan
,
P.
,
Wang
,
H.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2010, “
Characterization of Morphology and Mechanical Properties of Glass Interior Irradiated by Femtosecond Laser
,”
J. Manuf. Sci. Eng.
,
132
(
4
), p.
041009
.
12.
Schaffer
,
C. B.
,
Jamison
,
A. O.
, and
Mazur
,
E.
, 2004, “
Morphology of Femtosecond Laser-Induced Structural Changes in Bulk Transparent Materials
,”
Appl. Phys. Lett.
,
84
(
9
), pp.
1441
1443
.
13.
Miyamoto
,
I.
, 2007, “
Fusion Welding of Glass Using Femtosecond Laser Pulses With High-repetition Rates
,”
J. Laser Micro/Nanoeng.
,
2
(
1
), pp.
57
63
.
14.
Hallo
,
L.
,
Mézel
,
C.
,
Bourgeade
,
A.
,
Hébert
,
D.
,
Gamaly
,
E. G.
, and
Juodkazis
,
S.
, 2010, “
Laser-Matter Interaction in Transparent Materials: Confined Micro-explosion and Jet Formation
,”
Extreme Photonics & Applications
,
T. J.
Hall
,
S. V.
Gaponenko
, and
S. A.
Paredes
, eds.,
Springer
Netherlands
, pp.
121
146
.
15.
Gamaly
,
E. G.
,
Luther-Davies
,
B.
,
Hallo
,
L.
,
Nicolai
,
P.
, and
Tikhonchuk
,
V. T.
, 2006, “
Laser-Matter Interaction in the Bulk of a Transparent Solid: Confined Microexplosion and Void Formation
,”
Phys. Rev. B
,
73
(
21
), p.
214101
.
16.
Kitchener
,
J. A.
, and
Prosser
,
A. P.
, 1957, “
Direct Measurement of the Long-Range van der Waals Forces
,”
Proc. R. Lond. A
,
242
(
1230
), pp.
403
409
.
17.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
, 1997,
Mechanics of Materials
,
PWS Pub. Co.
,
Boston
.
18.
Sokolowski-Tinten
,
K.
,
Bialkowski
,
J.
,
Cavalleri
,
A.
,
Linde von der
,
D.
,
Oparin
,
A.
,
Meyer-ter-Vehn
,
J.
, and
Anisimov
,
S.
, 1998, “
Transient States of Matter during Short Pulse Laser Ablation
,”
Phys. Rev. Lett.
,
81
(
1
), pp.
224
227
.
19.
Rethfeld
,
B.
,
Sokolowski-Tinten
,
K.
,
Linde von der
,
D.
, and
Anisimov
,
S. I.
, 2004, “
Timescales in the Response of Materials to Femtosecond Laser Excitation
,”
Appl. Phys. A
,
79
(
4–6
), pp.
767
769
.
20.
Zhigilei
,
L. V.
, and
Garrison
,
B. J.
, 2000, “
Microscopic Mechanisms of Laser Ablation of Organic Solids in the Thermal and Stress Confinement Irradiation Regimes
,”
J. Appl. Phys.
,
88
(
3
), pp.
1281
1298
.
21.
Miotello
,
A.
, and
Kelly
,
R.
, 1999, “
Laser-Induced Phase Explosion: New Physical Problems When a Condensed Phase Approaches the Thermodynamic Critical Temperature
,”
Appl. Phys. A: Mater. Sci. Process.
,
69
(
7
), pp.
S67
S73
.
22.
Hallo
,
L.
,
Bourgeade
,
A.
,
Tikhonchuk
,
V. T.
,
Mezel
,
C.
, and
Breil
,
J.
, 2007, “
Model and Numerical Simulations of the Propagation and Absorption of a Short Laser Pulse in a Transparent Dielectric Material: Blast-Wave Launch and Cavity Formation
,”
Phys. Rev. B
,
76
(
2
), p.
024101
.
23.
Lawn
,
B. R.
, 1993,
Fracture of Brittle Solids
,
Cambridge University Press
,
Cambridge, United Kingdom
.
24.
Kese
,
K.
, and
Rowcliffe
,
D. J.
, 2003, “
Nanoindentation Method for Measuring Residual Stress in Brittle Materials
,”
Mater. Sci.
,
16
, pp.
811
816
.
25.
Irwin
,
G. R.
, 1962, “
Crack-Extension Force for a Part-Through Crack in a Plate
,”
J. Appl. Mech.
,
29
(
4
), pp.
651
654
.
26.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 2000,
The Stress Analysis of Cracks Handbook
,
ASME Press
,
New York
.
27.
Kern
,
W.
, 1990, “
The Evolution of Silicon Wafer Cleaning Technology
,”
J. Electrochem. Soc.
,
137
(
6
), pp.
1887
1892
.
28.
Zipfel
,
W. R.
,
Williams
,
R. M.
, and
Webb
,
W. W.
, 2003, “
Nonlinear Magic: Multiphoton Microscopy in the Biosciences
,”
Nat. Biotechnol.
,
21
(
11
), pp.
1369
1377
.
29.
Bhardwaj
,
V. R.
,
Corkum
,
P. B.
,
Rayner
,
D. M.
,
Hnatovsky
,
C.
,
Simova
,
E.
, and
Taylor
,
R. S.
, 2004, “
Stress in Femtosecond-Laser-Written Waveguides in Fused Silica
,”
Opt. Lett.
,
29
(
12
), pp.
1312
1314
.
30.
Ye
,
D.
,
Bing-Kun
,
Y.
,
Bo
,
L.
,
Jian-Rong
,
Q.
,
Xiao-Na
,
Y.
,
Xiong-Wei
,
J.
, and
Cong-Shan
,
Z.
, 2005, “
Thermal Stress-Induced Birefringence in Borate Glass Irradiated by Femtosecond Laser Pulses
,”
Chin. Phys. Lett.
,
22
(
10
), pp.
2626
2629
.
31.
Mecholsky
,
J. J.
, 1983, “
Toughening in Glass Ceramics
,”
Fracture Mechanics of Ceramics, Volume 6: Measurements, Transformations, and High-Temperature Fracture
,
R. C.
Bradt
,
A. G.
Evans
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds.,
Plenum Press
,
New York
.
32.
Krol
,
D.
, 2008, “
Femtosecond Laser Modification of Glass
,”
J. Non-Cryst. Solids
,
354
(
2–9
), pp.
416
424
.
33.
Broek
,
D.
, 1986,
Elementary Engineering Fracture Mechanics
,
Martinus Nijhoff Publishers
,
Dordrecht, The Netherlands
.
34.
Soga
,
N.
, 1985, “
Elastic Moduli and Fracture Toughness of Glass
,”
J. Non-Crystal. Solids
,
73
(
1–3
), pp.
305
313
.
35.
Varshneya
,
A. K.
, 1994,
Fundamentals of Inorganic Glasses
,
Academic Press, Inc.
,
San Diego, CA
.
36.
West
,
J.
, 1999, “
The Application of Fractal and Quantum Geometry to Brittle Fracture
,”
J. Non-Crystal. Solids
,
260
(
1–2
), pp.
99
108
.
You do not currently have access to this content.