The objectives of this work are to determine an accurate temperature feedback strategy and to develop a closed-loop feedback control system for temperature in friction stir welding (FSW). FSW is a novel joining technology enabling welds with excellent metallurgical and mechanical properties, as well as significant energy consumption and cost savings. However, numerous parameter and condition variations are present in the FSW production environment that can adversely affect weld quality, which has made extensive automation of this process impossible to date. To enable large scale automation while maintaining weld quality, techniques to control the FSW process in the presence of unknown disturbances must be developed. One process variable that must be controlled to maintain uniform weld quality under the inherent workpiece variability (thermal constraints, material properties, geometry, etc.) is the weld zone temperature. Our hypothesis is that the weld zone temperature can be controlled, which can help in controlling the weld quality. A wireless data acquisition system was built to measure temperatures at the tool-workpiece interface. A thermocouple was placed in a through hole right at the interface of tool and workpiece so that the tip is in contact with the workpiece material. This measurement strategy reveals temperature variations within a single rotation of the tool in real time. In order to automate the system, a first order process model with transport delay was experimentally developed that captures the physics between spindle speed and measured interface temperature. The model has a time constant of 110 ms and a delay time of 85 ms. Using this temperature measurement technique, a closed-loop temperature control system with a bandwidth of 0.3 Hz was developed. Interface temperatures in the range from 555 °C to 575 °C were commanded to an integral controller, which regulated the spindle speed between 850 rpm and 1250 rpm to adjust the heat generation and achieve the desired interface temperatures in 6061-T6 aluminum. To simulate changes in thermal boundary conditions, backing plates of different thermal diffusivities were found to effectively alter the heat flow, hence, weld zone temperature. The integral controller that manipulates spindle speed is applied when welding during these intentionally introduced weld disturbances. The measured temperature stayed within ±5 °C after introducing the disturbance, compared to a 50 °C change in temperature when no control was applied.

References

References
1.
Thomas
,
W. M.
,
Nicholas
,
E. D.
,
Needham
,
J. C.
,
Murch
,
M. G.
,
Temple-Smith
,
P.
, and
Dawes
,
C. J.
, 1991, “
Friction Stir Butt Welding
,” GB patent no. 9125978.8.
2.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
, 2005, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R
,
50
, pp.
1
78
.
3.
Threadgill
,
P. L.
,
Leonard
,
A. J.
,
Shercliff
,
H. R.
, and
Withers
,
P. J.
, 2009, “
Friction Stir Welding of Aluminium Alloys
,”
Int. Mater. Rev.
,
54
(
2
), pp.
49
93
.
4.
Smith
,
C. B.
, 2000, “
Robotic Friction Stir Welding Using a Standard Industrial Robot
,”
2nd International Friction Stir Welding Symposium
, Gothenburg, Sweden, TWI (CDROM).
5.
von Strombeck
,
A.
,
Schilling
,
C.
, and
dos Santos
,
J. F.
, 2000, “
Robotic Friction Stir Welding—Tool Technology and Applications
,”
2nd International Friction Stir Welding Symposium
, Gothenburg, Sweden, TWI (CDROM).
6.
Zäh
,
M. F.
, and
Eireiner
,
D.
, 2004, “
Friction Stir Welding Using NC Milling Machines
,”
Weld. Cutting
,
3
(
4
), pp.
220
223
.
7.
Gebhard
,
P.
, and
Zäh
,
M. F.
, 2008, “
Force Control Design for CNC-Milling Machines for Friction Stir Welding
,”
7th International Friction Stir Welding Symposium
, Awaji Island, Japan, TWI (CDROM).
8.
Oakes
,
T.
, and
Landers
,
R. G.
, 2009, “
Design and Implementation of a General Tracking Controller for Friction Stir Welding Processes, FrC12.5
,”
Proceedings of the American Control Conference
St. Louis, Missouri
, pp.
5576
5581
.
9.
Zhao
,
X.
,
Kalyab
,
P.
,
Landers
,
R. G.
, and
Krishnamurthy
,
K.
, 2008, “
Design and Implementation of Nonlinear Force Controllers for Friction Stir Welding Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
061011
.
10.
Smith
,
C. B.
, and
Hinrichs
,
J. F.
, 2004, Private communication.
11.
Fehrenbacher
,
A.
,
Pfefferkorn
,
F. E.
,
Zinn
,
M. R.
,
Ferrier
,
N. J.
, and
Duffie
,
N. A.
, 2008, “
Closed-Loop Control of Temperature in Friction Stir Welding
,”
7th International Friction Stir Welding Symposium
, Awaji Island, Japan, TWI (CDROM).
12.
Peel
,
M.
,
Steuwer
,
A.
,
Preuss
,
M.
, and
Withers
,
P. J.
, 2003, “
Microstructure, Mechanical Properties and Residual Stresses as a Function of Welding Speed in Aluminum AA5083 Friction Stir Welds
,”
Acta Mater.
,
51
, pp.
4791
4801
.
13.
Gratecap
,
F.
,
Racineux
,
G.
, and
Marya
,
S.
, 2008, “
A Simple Methodology to Define Conical Tool Geometry and Welding Parameters in Friction Stir Welding
,”
7th International Friction Stir Welding Symposium
, Awaji Island, Japan, TWI (CDROM).
14.
Chao
,
Y. J.
,
Qi
,
X.
, and
Tang
,
W.
, 2003, “
Heat Transfer in Friction Stir Welding-Experimental and Numerical Studies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
138
45
.
15.
Chao
,
Y. J.
,
Shu
,
L.
, and
Chi-Hui
,
C.
, 2008, “
Friction Stir Welding of AL 6061-T6 Thick Plates. Part I. Experimental Analyses of Thermal and Mechanical Phenomena
,”
J. Chin. Inst. Eng.
,
31
(
5
), pp.
757
67
.
16.
Simar
,
A.
,
Bréchet
,
Y.
,
de Meester
,
B.
,
Denquin
,
A.
, and
Pardoen
,
T.
, 2010, “
Integrated Modelling of Friction Stir Welding in 6xxx Series Aluminium Alloys
,”
8th International Friction Stir Welding Symposium
,
Timmendorfer Strand
,
Germany
, TWI (CDROM).
17.
Wang
,
X.-j
,
Zhang
,
Z.-k
,
Guo
,
R.-j
,
Han
,
X.-h
, and
Rong
,
A.
, 2004, “
Application of MCGS for Process Control and Realtime Detection in the Process of Friction Stir Welding
,”
8th International Conference on Control, Automation, Robotics and Vision
Kunming, China
, pp.
499
503
.
18.
Arbegast
,
W. J.
, 2005, “
Using Process Forces as a Statistical Process Control Tool for Friction Stir Welds
,” in
Friction Stir Welding and Processing
,
K. V.
Jata
,
M. W.
Mahoney
,
R. S.
Mishra
,
T. J.
Lienert
, eds.,
TMS
,
Warrendale, PA
, Vol.
3
, pp.
193
204
.
19.
Cederqvist
,
L.
,
Reynolds
,
A. P.
,
Sorensen
,
C. D.
, and
Garpinger
,
O.
, 2010, “
Reliable FSW of Copper Canisters Using Improved Process and Regulator Controlling Power Input and Tool Temperature
,”
8th International Friction Stir Welding Symposium
,
Timmendorfer Strand
,
Germany
, TWI (CDROM).
20.
Mayfield
,
D. W.
, and
Sorensen
,
C. D.
, 2010, “
An Improved Temperature Control Algorithm for Friction Stir Processing
,”
8th International Friction Stir Welding Symposium
,
Timmendorfer Strand
,
Germany
, TWI (CDROM).
21.
Shultz
,
E. F.
,
Cole
,
E. G.
,
Smith
,
C. B.
,
Zinn
,
M. R.
,
Ferrier
,
N. J.
, and
Pfefferkorn
,
F. E.
, 2010, “
Effect of Compliance and Travel Angle on Friction Stir Welding with Gaps
,”
J. Manuf. Sci. Eng.
,
132
(
4
),p.
041010
.
22.
Woo
,
W.
,
Feng
,
Z.
,
Wang
,
X. L.
,
Brown
,
D. W.
,
Clausen
,
B.
,
An
,
K.
,
Choo
,
H.
,
Hubbard
,
C. R.
, and
David
,
S. A.
, 2007, “
In Situ Neutron Diffraction Measurements of Temperature and Stresses During Friction Stir Welding of 6061-T6 Aluminium Alloy
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
298
303
.
23.
Record
,
J. H.
,
Covington
,
J. L.
,
Nelson
,
T. W.
,
Sorensen
,
C. D.
, and
Webb
,
B. W.
, 2004, “
Fundamental Characterization of Friction Stir Welding
,”
5th International Friction Stir Welding Symposium
,
Metz
,
France
, TWI (CDROM).
24.
Nishihara
,
T.
, and
Nagasaka
,
Y.
, 2003, “
Measurement of Tool Temperature During Friction Stir Welding
,”
4th International Friction Stir Welding Symposium
,
Park City, Utah
, TWI (CDROM).
25.
Yasui
,
T.
,
Kuwahara
,
M.
,
Tsubaki
,
M.
, and
Fukumoto
,
M.
, 2008, “
Material Flow and Forces in Dissimilar Metal Welding by Friction Stirring
,”
7th International Friction Stir Welding Symposium
,
Awaji Island, Japan
, TWI (CDROM).
26.
Cederqvist
,
L.
,
Johansson
,
R.
,
Robertsson
,
A.
, and
Bolmsjö
,
G.
, 2009, “
Faster Temperature Response and Repeatable Power Input to Aid Automatic Control of Friction Stir Welded Copper Canisters
,” in
Friction Stir Welding and Processing
,
R. S.
Mishra
,
M. W.
Mahoney
,
T. J.
Lienert
, eds.,
TMS
,
Warrendale, PA
, Vol.,
5
, pp.
39
43
.
27.
Gerlich
,
A.
,
Su
,
P.
,
North
,
T. H.
, and
Bendzsak
,
G. J.
, 2005, “
Friction Stir Spot Welding of Aluminum and Magnesium Alloys
,”
Mater. Forum
,
29
, pp.
290
294
.
28.
Suprock
,
C. A.
,
Fussell
,
B. K.
,
Hassan
,
R. Z.
, and
Jerard
,
R. B.
, 2008, “
A Low Cost Wireless Tool Tip Vibration Sensor for Milling, MSEC_ICMP2008-72492
,”
Proceedings of the International Manufacturing Science and Engineering Conference
,
Evanston, IL
.
29.
2007,
Temperature Measurement Handbook
,
Omega Engineering, Inc.
, p.
Z
-
26
.
30.
Pew
,
J. W.
,
Nelson
,
T. W.
, and
Sorensen
,
C. D.
, 2007, “
Torque Based Weld Power Model for Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
12
(
4
), pp.
341
347
.
31.
Colligan
,
K. J.
, and
Mishra
,
R. S.
, 2008, “
A Conceptual Model for the Process Variables Related to Heat Generation in Friction Stir Welding of Aluminum
,”
Scr. Mater.
,
58
(
5
), pp.
327
331
.
32.
Rajamanickam
,
N.
,
Balusamy
,
V.
,
Madhusudhanna Reddy
,
G.
, and
Natarajan
,
K.
, 2009, “
Effect of Process Parameters on Thermal History and Mechanical Properties of Friction Stir Welds
,”
Mater. Des.
,
30
(
7
), pp.
2726
2731
.
33.
Cederqvist
,
L.
, and
Öberg
,
T.
, 2007, “
Reliability Study of Friction Stir Welded Copper Canisters Containing Sweden’s Nuclear Waste
,”
Reliab. Eng. Syst. Saf.
,
93
, pp.
1491
1499
.
34.
Moron
,
M. J.
,
Luque
,
R.
,
Casilari
,
E.
, and
Diaz-Estrella
,
A.
, 2008, “
Minimum Delay Bound in Bluetooth Transmissions with Serial Port Profile
,”
Electron. Lett.
,
44
(
18
), pp.
1099
1101
.
35.
Moron
,
M. J.
,
Luque
,
R.
,
Casilari
,
E.
, and
Diaz-Estrella
,
A.
, 2009, “
Characterization of Bluetooth Packet Delay in Noisy Environments
,”
IEEE Commun. Lett.
,
13
(
9
), pp.
661
663
.
36.
Boyer
,
H. E.
, and
Gall
,
T. L.
,
Metals Handbook
(
American Society for Metals
,
Materials Park, OH
, 1985).
37.
Cho
,
J.-H.
,
Boyce
,
D. E.
, and
Dawson
,
P. R.
, 2005, “
Modeling Strain Hardening and Texture Evolution in Friction Stir Welding of Stainless Steel
,”
Mater. Sci. Eng. A
,
398
(
1–2
), pp.
146
163
.
38.
Cho
,
J.-H.
,
Boyce
,
D. E.
, and
Dawson
,
P. R.
, 2007, “
Modelling of Strain Hardening During Friction Stir Welding of Stainless Steel
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
5
), pp.
469
486
.
39.
Maeda
,
M.
,
Liu
,
H.
,
Fujii
,
H.
, and
Shibayanagi
,
T.
, 2005, “
Temperature Field in the Vicinity of FSW-Tool During Friction Stir Welding of Aluminium Alloys
,”
Weld. World
,
49
(
3
), pp.
69
75
.
You do not currently have access to this content.