This paper presents a computational approach for simulating the motion of a single fiber suspended within a viscous fluid. We develop a finite element method (FEM) for modeling the dynamics of a single rigid fiber suspended in a moving fluid. Our approach seeks solutions using the Newton–Raphson method for the fiber’s linear and angular velocities such that the net hydrodynamic forces and torques acting on the fiber are zero. Fiber motion is then computed with a Runge-Kutta method to update the fiber position and orientation as a function of time. Low-Reynolds-number viscous flows are considered since these best represent the flow conditions for a polymer melt within a mold cavity. This approach is first used to verify Jeffery’s orbit (1922) and addresses such issues as the role of a fiber’s geometry on the dynamics of a single fiber, which were not addressed in Jeffery’s original work. The method is quite general and allows for fiber shapes that include, but are not limited to, ellipsoidal fibers (such as that studied in Jeffery’s original work), cylindrical fibers, and bead-chain fibers. The relationships between equivalent aspect ratio and geometric aspect ratio of cylindrical and other axisymmetric fibers are derived in this paper.

References

References
1.
Jeffery
,
G. B.
, 1922, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London
,
102
(
715
), pp.
161
179
.
2.
Folgar
,
F.
, and
Tucker
III,
C. L.
, 1984, “
Orientation Behavior of Fibers in Concentrated Suspensions
,”
J. Reinf. Plast. Compos.
,
3
(
2
), pp.
98
119
.
3.
Advani
,
S. G.
, and
Tucker
III,
C. L.
, 1987, “
The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites
,”
J. Rheol.
,
31
(
8
), pp.
751
784
.
4.
Montgomery-Smith
,
S.
,
Jack
,
D. A.
, and
Smith
,
D. E.
, 2011, “
The Fast Exact Closure for Jefferys Equation With Diffusion
,”
J. Non-Newtonian Fluid Mech.
,
166
(
7–8
), pp.
343
353
.
5.
Cintra
,
J. S.
, and
Tucker
III,
C. L.
, 1995, “
Orthotropic Closure Approximations for Flow-Induced Fiber Orientation
,”
J. Rheol.
,
39
(
6
), pp.
1095
1122
.
6.
Jack
,
D. A.
, and
Smith
,
D. E.
, 2005, “
An Invariant Based Fitted Closure of the Sixth-Order Orientation Tensor for Modeling Short-Fiber Suspensions
,”
J. Rheol.
,
49
(
5
), pp.
1091
1115
.
7.
Taylor
,
G. I.
, 1923, “
The Motion of Ellipsoidal Particles in a Viscous Fluid
,”
Proc. R. Soc. London
,
103
(
720
), pp.
58
61
.
8.
Trevelyan
,
B. J.
, and
Mason
,
S. G.
, 1951, “
Particle Motions in Sheared Suspensions. I. Rotations
,”
J. Colloid Sci.
,
6
, pp.
354
367
.
9.
Mason
,
S. G.
, and
Manley
,
R. St. J.
, 1956, “
Particle Motions in Sheared Suspensions: Orientation and Interactions of Rigid Rods
,”
Proc. R. Soc. London
,
238
(1212), pp.
117
131
.
10.
Anczurowski
,
E.
, and
Mason
,
S. G.
, 1968, “
Particle Motions in Sheared Suspensions. XXIV. Rotation of Rigid Spheroids and Cylinders
,”
J. Rheol.
,
12
(
2
), pp.
209
215
.
11.
Wang
,
J.
,
O’Gara
,
J. F.
, and
Tucker
III,
C. L.
, 2008, “
An Objective Model for Slow Orientation Kinetics in Concentrated Fiber Suspensions: Theory and Rheological Evidence
,”
J. Rheol.
,
52
(
5
), pp.
1179
1200
.
12.
Petrie
,
C. J. S.
, 1999, “
The Rheology of Fibre Suspensions
,”
J. Non-Newtonian Fluid Mech.
,
87
(
2–3
), pp.
369
402
.
13.
Leal
,
L. G.
, 1980, “
Particle Motions in a Viscous Fluid
,”
Annu. Rev. Fluid Mech.
,
12
(
1
), pp.
435
476
.
14.
Jia
,
L.
, 2006, “
Flow-Induced Alignment Migration of Particles in Suspensions
,” Ph.D. thesis, Michigan State University, East Lansing, MI 48824.
15.
Junk
,
M.
, and
Illner
,
R.
, 2007, “
A New Derivation of Jeffery’s Equation
,”
J. Math. Fluid Mech.
,
9
(
4
), pp.
445
288
.
16.
Batchelor
,
G. K.
, 1970, “
The Stress System in a Suspension of Force-Free Particles
,”
J. Fluid Mech.
,
41
, pp.
545
570
.
17.
Batchelor
,
G. K.
, 1970, “
Slender Body Theory for Particles of Arbitrary Cross-Section in Stoke Flow
,”
J. Fluid Mech.
,
44
, pp.
419
440
.
18.
Yamamoto
,
S.
, and
Matsuoka
,
T.
, 1993, “
A Method for Dynamic Simulation of Rigid and Flexible Fibers in a Flow Field
,”
J. Chem. Phys.
,
98
(
1
), pp.
644
650
.
19.
Ross
,
R. F.
, and
Klingenberg
,
D. J.
, 1997, “
Dynamic Simulation of Flexible Fibers Composed of Linked Rigid Bodies
,”
J. Chem. Phys.
,
106
(
7
), pp.
2949
2960
.
20.
Wang
,
G.
,
Yu
,
W.
, and
Zhou
,
C.
, 2006, “
Optimization of the Rod Chain Model to Simulate the Motions of a Long Flexible Fiber in Simple Shear Flows
,”
Eur. J. Mech. B/Fluids
,
25
(
3
), pp.
337
347
.
21.
Switzer
III,
L. H.
, 2002, “
Simulating Systems of Flexible Fibers
,” Ph.D. thesis, University of Wisconsin-Madison, WI 53706.
22.
Bretherton
,
F. P.
, 1962, “
The Motion of Rigid Particles in a Shear Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
14
(
2
), pp.
284
304
.
23.
Petrich
,
M. P.
,
Koch
,
D. L.
, and
Cohen
,
C.
, 2000, “
An Experimental Determination of the Stress-Microstructure Relationship in Semi-Concentrated Fiber Suspensions
,”
J. Non-Newtonian Fluid Mech.
,
95
(
2–3
), pp.
101
133
.
24.
Harris
,
J. B.
, and
Pittman
,
J. F. T.
, 1975, “
Equivalent Ellipsoidal Aspect Ratios of Slender Rod-Like Particles
,”
J. Colloid Interface Sci.
,
50
(
2
), pp.
280
282
.
25.
Cox
,
R. G.
, 1971, “
The Motion of Long Slender Bodies in a Viscous Fluid. Part 2. Shear Flow
,”
J. Fluid Mech.
,
45
(
4
), pp.
625
657
.
26.
Sugihara-Seki
,
M.
, 1996, “
The Motion of an Ellipsoid in Tube Flow at Low Reynolds Numbers
,”
J. Fluid Mech.
,
324
, pp.
287
308
.
27.
Chwang
,
A. T.
, 1975, “
Hydromechanics of Low-Reynolds-Number Flow. Part 3. Motion of a Spheroidal Particle in Quadratic Flows
,”
J. Fluid Mech.
,
72
(
1
), pp.
17
34
.
28.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, 1994, “
Direction Simulation of Initial Value Problems for the Motion of Solid Bodies in a Newtonian Fluid, Part 2. Couette and Poiseuille Flows
,”
J. Fluid Mech.
,
277
, pp.
271
301
.
29.
Hu
,
H. H.
,
Joseph
,
D. D.
, and
Crochet
,
M. J.
, 1992, “
Direct Simulation of Fluid Particle Motions
,”
Theor. Comput. Fluid Dyn.
,
3
, pp.
285
306
.
30.
Lamb
,
H.
,
Hydrodynamics
(
Cambridge University
,
Cambridge
, 1916).
31.
Chapra
,
S. C.
,
Applied Numerical Methods With MATLAB for Engineers and Scientists-Second Edition
(
McGraw-Hill
,
New York
, 2008).
32.
Chaffey
,
C. E.
,
Takano
,
M.
, and
Mason
,
S. G.
, 1965, “
Particle Motions in Sheared Suspensions. XVI. Orientations of Rods and Disks in Hyperbolic and Other Flows
,”
Can. J. Phys.
,
43
, pp.
1269
1287
.
You do not currently have access to this content.