This paper describes laser-based layered manufacturing processes for embedding optical fiber Bragg gratings (FBGs) in metal structures to develop cutting tools with embedded sensors. FBG is a type of optical fiber that is used for the measurement of parameters manifesting as the changes of strain or temperature. The unique features of FBGs have encouraged their widespread use in structural measurements, failure diagnostics, thermal measurements, pressure monitoring, etc. Considering the unique features of FBGs, embedding of the sensors in metal parts for in-situ load monitoring is a cutting-edge research topic with a variety of applications in machining tools, aerospace, and automotive industries. The metal embedding process is a challenging task, as the thermal decay of UV-written gratings can start at a temperature of ∼200 °C and accelerates at higher temperatures. The embedding process described in this paper consists of low temperature laser microdeposition of on-fiber silver thin films followed by nickel electroplating in a steel part. A microscale laser-based direct write (DW) method, called laser-assisted maskless microdeposition (LAMM), is employed to deposit silver thin films on optical fibers. To attain thin films with optimum quality, a characterization scheme is designed to study the geometrical, mechanical, and microstructural properties of the thin films in terms of the LAMM process parameters. To realize the application of embedded FBG sensors in machining tools, the electroplating process is followed by the deposition of a layer of tungsten carbide-cobalt (WC-Co) by using laser solid freeform fabrication (LSFF). An optomechanical model is also developed to predict the optical response of the embedded FBGs. The performance of the embedded sensor is evaluated in a thermal cycle. The results show that the sensor attains its linear behavior after embedding. Microscopic analysis of the tool with the embedded sensor clearly exhibits the integrity of the deposited layers without cracks, porosity, and delamination.

References

References
1.
Erdogan
,
T.
, 1997, “
Fiber Grating Spectra
,”
J. Lightwave Technol.
,
15
(
8
), pp.
1277
1294
.
2.
Kashyap
,
R.
, 2010,
Fiber Bragg Gratings
,
2nd ed.
,
Academic Press
,
Burlington, MA
.
3.
Corning SMF-28 Optical Fiber Product Information
,” Corning Inc., Corning, NY, 2002.
4.
Guemes
,
J. A.
, and
Menendez
,
J. M.
, 2002, “
Response of Bragg Grating Fiber-Optic Sensors When Embedded in Composite Laminates
,”
Compos. Sci. Technol.
,
62
, pp.
959
966
.
5.
Lau
,
K. T.
,
Chanb
,
C. C.
,
Zhoua
,
L. M.
, and
Jin
,
W.
, 2001, “
Strain Monitoring in Composite-Strengthened Concrete Structures Using Optical Fibre Sensors
,”
Composites, Part B
,
32
, pp.
33
45
.
6.
Kuang
,
K. S. C.
, and
Cantwell
,
W. J.
, 2003, “
Use of Conventional Optical Fibers and Fiber Bragg Gratings for Damage Detection in Advanced Composite Structures: A Review
,”
Appl. Mech. Rev.
,
56
(
5
), pp.
493
513
.
7.
Li
,
X. C.
,
Prinz.
F.
, and
Seim
,
J.
, 2001, “
Thermal Behavior of A Metal Embedded Fiber Bragg Grating Sensor
,”
Smart Mater. Struct.
,
10
, pp.
575
579
.
8.
Cheng
,
X.
,
Datta
,
A.
,
Choi
,
H.
,
Zhang
,
X.
, and
Li
,
X.
, 2007, “
Study on Embedding and Integration of Microsensors into Metal Structures for Manufacturing Applications
,”
ASME J. Manuf. Sci. Eng.
,
129
, pp.
416
424
.
9.
Zhang
,
X.
,
Choi
,
H.
,
Datta
,
A.
, and
Li
,
X.
, 2006, “
Design, Fabrication, and Characterization of Metal Embedded Thin Film Thermocouples With Various Film Thicknesses and Junction Size
,”
J. Micromech. Microeng.
,
16
, pp.
900
905
.
10.
Shen
,
Y.
,
He
,
J.
,
Qiu
,
Y.
,
Zhao
,
W.
,
Chen
,
S.
,
Sun
,
T.
, and
Grattan
,
K. T. V.
, 2007, “
Thermal Decay Characteristics of Strong Fiber Bragg Gratings Showing High-Temperature Sustainability
,”
J. Opt. Soc. Am. B
,
24
(
3
), pp.
430
438
.
11.
Bucaro
,
J. a.
, and
Dardy
,
H. D.
, 1974, “
High-Temperature Brillouin Scattering in Fused Quartz
,”
J. Appl. Phys.
,
45
(
12
), pp.
5324
5329
.
12.
Lee
,
C. E.
,
Gibler
,
W. N.
,
Atkins
,
R. A.
,
Alcoz
,
J. J.
, and
Taylor
,
H. F.
, 1991, “
Metal-Embedded Fiber-Optic Fabry-Perot Sensors
,”
Opt. Lett.
,
16
, pp.
1990
1992
.
13.
Sandlin
,
S.
,
Kinnunen
,
T.
,
Ramo
,
J.
, and
Sillanpaa
,
M.
, 2006, “
A Simple Method For Metal Re-Coating of Optical Fibre Bragg Gratings
,”
Surf. Coat. Technol.
,
201
, pp.
3061
3065
.
14.
Kong
,
C. Y.
, and
Soar
,
R.
, 2005, “
Methods for Embedding Optical Fibers in an Aluminum Matrix by Ultrasonic Consolidation
,”
Appl. Opt.
,
44
, pp.
6325
6333
.
15.
Lupi
,
C.
,
Felli
,
F.
,
Ippoliti
,
L.
,
Caponero
,
M. A.
,
Ciotti
,
M.
,
Nardelli
,
V.
, and
Paolozzi
,
A.
, 2005, “
Metal Coating for Enhancing the Sensitivity of Fibre Bragg Grating Sensors at Cryogenic Temperature
,”
Smart Mater. Struct.
,
14
, pp.
N71
N76
.
16.
Li
,
L.
,
Geng
,
R.
,
Zhao
,
L.
,
Chen
,
G.
,
Chen
,
G.
,
Fang
,
Z.
, and
Lam
,
C.
, 2003, “
Response Characteristics of Thin-Film-Heated Tunable Fiber Bragg Gratings
,”
IEEE Photonics Technol. Lett.
,
15
(
4
), pp.
545
547
.
17.
Steinvurzel
,
P.
,
MacHarrie
,
R.
,
Baldwin
,
K.
,
Van Hise
,
C.
,
Eggleton
,
B.
, and
Rogers
,
J.
, 2005, “
Optimization of Distributed Resistive Metal Film Heaters in Thermally Tunable Dispersion Compensators for High-Bit-Rate Communication Systems
,”
Appl. Opt.
,
44
(
14
), pp.
2782
2791
.
18.
Fox
,
G.
,
Muller
,
C.
,
Setter
,
N.
,
Costantini
,
D.
,
Ky
,
N.
, and
Limberger
,
H.
, 1997, “
Wavelength Tunable Fiber Bragg Grating Devices Based on Sputter Deposited Resistive and Piezoelectric Coatings
,”
J. Vac. Sci. Technol. A
,
15
(
3
), pp.
1791
1795
.
19.
Sutapun
,
B.
,
Tabib-Azar
,
M.
, and
Kazemi
,
A.
, 1999, “
Pd-Coated Elastooptic Fiber Optic Bragg Grating Sensors for Multiplexed Hydrogen Sensing
,”
Sens. Actuators B
,
60
(
1
), pp.
27
34
.
20.
Alemohammad
,
H.
, and
Toyserkani
,
E
, “
Smart Tools with Embedded Optical Fibers: Laser Based Layered Manufacturing Procedures
,”
Proceedings of ICALEO 2009
,
102
, pp.
1160
1164
.
21.
Othonos
,
A.
and
Kalli
,
K.
, 1999,
Fiber Bragg Gratings
,
1st
ed.,
Artech House
,
Boston
.
22.
Buck
,
J. A.
, 2004,
Fundamentals of Optical Fibers
,
2nd
ed.,
Wiley
,
Hoboken
.
23.
Alemohammad
,
H.
, 2010, “
Development of Optical Fiber-Based Sensing Devices Using Laser Microfabrication Methods
,” Ph.D. thesis, University of Waterloo, Waterloo, Canada.
24.
Kim
,
K. S.
,
Kollar
,
L.
, and
Springer
,
G.S.
, 1993, “
A Model of Embedded Fiber Optic Fabry–Perot Temperature and Strain Sensors
,”
J. Compos. Mater.
,
27
, pp.
1618
1662
.
25.
Alemohammad
,
H.
,
Toyserkani
,
E.
, 2009, “
Simultaneous Measurement of Temperature and Tensile Loading using Tunable Superstructure FBGs Developed by Laser-Direct Writing of Periodic On-Fiber Metallic Films
,”
Smart Mater. Struct.
,
18
(
9
), article no.
095048
.
26.
Alemohammad
,
H.
,
Aminfar
,
O.
, and
Toyserkani
,
E.
, 2008, “
Morphology and Microstructure Analysis of Nano-Silver Thin Films Deposited by Laser-Assisted Maskless Microdeposition
,”
J. Micromech. Microeng.
,
18
(
11
), article no.
115015
.
27.
Piqué
,
A.
,
Chrisey
,
D. B.
,
Auyeung
,
R. C. Y.
,
Fitz-Gerald
,
J.
,
Wu
,
H. D.
,
McGill
,
R. A.
,
Lakeou
,
S.
,
Wu
,
P. K.
,
Nguyen
,
V.
, and
Duigna
,
M.
, 1999, “
A Novel Laser Transfer Process for Direct Writing of Electronic and Sensor Materials
,”
Appl. Phys. A
,
69
, pp.
S279
S284
.
28.
Nakaso
,
K.
,
Shimada
,
M.
,
Okuyama
,
K.
, and
Deppert
,
K.
, 2002, “
Evaluation of The Change in The Morphology of Gold Nanoparticles During Sintering
,”
J. Aerosol Sci.
,
33
(
7
), pp.
1061
1074
.
29.
Auyeung
,
R. C. Y.
,
Kim
,
H.
,
Mathews
,
S. A.
, and
Piqué
,
A.
, 2007, “
Laser Direct-Write of Metallic Nanoparticle Inks
,”
J. Laser Micro/Nanoeng.
,
2
(
21
), pp.
21
25
.
30.
Arcidiacono
,
S.
,
Bieri
,
N. R.
,
Poulikakos
,
D.
, and
Grigoropoulos
,
C. P.
, 2004, “
On the Coalescence of Gold Nanoparticles
,”
Int. J. Multiphase Flow
,
30
(
7–8
), pp.
979
994
.
31.
Greer
,
J.
, and
Street
,
R.
, 2007, “
Thermal Cure Effects on Electrical Performance of Nanoparticle Silver Inks
,”
Acta Mater.
,
55
(
18
), pp.
6345
6349
.
32.
Paul
,
C. P.
,
Alemohammad
,
H.
,
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
, 2007, “
Cladding of WC-12Co on Low Carbon Steel Using a Pulsed Nd: YAG Laser
,”
Mater. Sci. Eng., A
,
464
(
1–2
), pp.
170
176
.
33.
Moon
,
K. S.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Hunt
,
A.
,
Li
,
Y.
, and
Wong
,
C. P.
, 2005, “
Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications
,”
J. Electron. Mater.
,
34
(
2
), pp.
168
175
.
34.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
35.
Freud
,
L. B.
and
Suresh
,
S.
, 2003,
Thin Film Materials
,
Cambridge University
,
Cambridge, UK
, p.
545
.
36.
Cao
,
Y.
,
Allameh
,
S.
,
Nankivil
,
D.
,
Sethiaraj
,
S.
,
Otiti
,
T.
and
Soboyejo
,
W.
, 2006, “
Nanoindentation Measurements of the Mechanical Properties of Polycrystalline Au and Ag Thin Films on Silicon Substrates: Effects of Grain Size and Film Thickness
,”
Mater. Sci. Eng. A
,
427
(
1–2
), pp.
232
240
.
37.
Panin
,
A.
,
Shugurov
,
A.
and
Oskomov
,
K.
, 2005, “
Mechanical Properties of Thin Ag Films on a Silicon Substrate Studied Using the Nanoindentation Technique
,”
Phys. Solid State
,
47
(
11
), pp.
2055
2059
.
You do not currently have access to this content.