This paper presents a numerical scheme to predict the milling stability based on the integral equation and numerical integration formulas. First, the milling dynamics taking the regenerative effect into account is represented in the form of integral equation. Then, the tooth passing period is precisely divided into the free vibration phase during which the analytical solution is available and the forced vibration phase during which an approximate solution is needed. To obtain the numerical solution of the integral equation during the forced vibration phase, the time interval of interest is equally discretized. Over each small time interval, Newton-Cotes integration formulas or Gauss integration formulas are employed to approximate the integral term in the integral equation. After establishing the state transition matrix of the system in one period, the milling stability is predicted by using Floquet theory. The benchmark examples are utilized to verify the proposed approach. The results demonstrate that it is highly efficient and accurate.

References

1.
Altintas
,
Y.
, 2000,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge
.
2.
Altintas
,
Y.
, and
Weck
,
M.
, 2004, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.—Manuf. Technol.
,
53
(
2
), pp.
619
642
.
3.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London, Ser. A
,
359
, pp.
793
819
.
4.
Wiercigroch
,
M.
, and
Budak
,
E.
, 2001, “
Sources of Nonlinearities, Chatter Generation and Suppression in Metal Cutting
,”
Philos. Trans. R. Soc. London, Ser. A
359
(
1781
), pp.
663
693
.
5.
Schmitz
,
T. L.
, 2000, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann. – Manuf. Technol.
,
49
(
1
), pp.
303
308
.
6.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
, 2001, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
.
7.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
, 1996, “
Prediction of Milling Force Coefficients from Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
8.
Altintas
,
Y.
,
Stépán
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
, 2008, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
.
9.
Minis
,
I.
, and
Yanushevsky
,
R.
, 1993, “
A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling
,”
J. Eng. Ind.
,
115
(
1
), pp.
1
8
.
10.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.—Manuf. Technol.
,
44
(
1
), pp.
357
362
.
11.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst,. Meas., Control
,
120
(
1
), pp.
22
30
.
12.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.
13.
Merdol
,
S. D.
, and
Altintas
,
Y.
, 2004, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
14.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
225
.
15.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
16.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations with Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
17.
Insperger
,
T.
,
Stépán
,
G.
, and
Turi
,
J.
, 2008, “
On the Higher-Order Semi-Discretizations for Periodic Delayed Systems
,”
J. Sound Vib.
,
313
(
1–2
), pp.
334
341
.
18.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
, 2010, “
On the Stability of High-Speed Milling with Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
.
19.
Seguy
,
S.
,
Dessein
,
G.
,
Arnaud
,
L.
, and
Insperger
,
T.
, 2010, “
Control of Chatter by Spindle Speed Variation in High-Speed Milling
,”
,
112
(
1
), pp.
179
186
.
20.
Sims
,
N. D.
,
Mann
,
B.
, and
Huyanan
,
S.
, 2008, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
.
21.
Dombovari
,
Z.
,
Altintas
,
Y.
, and
Stepan
,
G.
, 2010, “
The Effect of Serration on Mechanics and Stability of Milling Cutters
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
511
520
.
22.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2001, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
Proceedings of the ASME Design Engineering Technical Conference
, Vol.
6C
, pp.
2361
2370
.
23.
Bayly
,
P. V.
,
Mann
,
B. P.
,
Schmitz
,
T. L.
,
Peters
,
D. A.
,
Stepan
,
G.
, and
Insperger
,
T.
, 2002, “
Effects of Radial Immersion and Cutting Direction on Chatter Instability in End-Milling
,”
American Society of Mechanical Engineers, Manufacturing Engineering Division, MED
, Vol.
13
, pp.
351
363
.
24.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
446
453
.
25.
Mann
,
B. P.
,
Edes
,
B. T.
,
Easley
,
S. J.
,
Young
,
K. A.
, and
Ma
,
K.
, 2008, “
Chatter Vibration and Surface Location Error Prediction for Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
350
361
.
26.
Butcher
,
E. A.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabo
,
Z.
, 2004, “
Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
,
59
(
7
), pp.
895
922
.
27.
Maghami Asl
,
F.
, and
Ulsoy
,
A. G.
, 2003, “
Analysis of a System of Linear Delay Differential Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
125
(
2
), pp.
215
223
.
28.
Yi
,
S.
,
Nelson
,
P. W.
, and
Ulsoy
,
A. G.
, 2007, “
Delay Differential Equations Via the Matrix Lambert W Function and Bifurcation Analysis: Application to Machine Tool Chatter
,”
Math. Biosci. Eng.
,
4
(
2
), pp.
355
368
.
29.
Olvera
,
D.
,
Calva
,
V.
,
Gonzalez
,
J. L.
,
Pacheco
,
J.
,
Elias-Zuniga
,
A.
, and
De Lacalle
,
L. N. L.
, 2008, “
Milling Stability Lobes Computation through the Lambert W Function
,”
Transactions of the North American Manufacturing Research Institution of SME
, Vol.
36
, pp.
233
239
.
30.
Olgac
,
N.
, and
Sipahi
,
R.
, 2005, “
A Unique Methodology for Chatter Stability Mapping in Simultaneous Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
791
800
.
31.
Olgac
,
N.
, and
Sipahi
,
R.
, 2007, “
Dynamics and Stability of Variable-Pitch Milling
,”
J. Vib. Control
,
13
(
7
), pp.
1031
1043
.
32.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
, 2009, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
J. Comput. Nonlinear Dyn.
,
4
(
3
), pp.
031003
.
33.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
, 2010, “
A Full-Discretization Method for Prediction of Milling Stability
,”
Int. J. Mach. Tools Manuf.
,
50
(
5
), pp.
502
509
.
34.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
, 2011, “
On a Numerical Method for Simultaneous Prediction of Stability and Surface Location Error in Low Radial Immersion Milling
,”
ASME J. Dyn. Syst., Meas. Control
,
133
(
2
), p.
024503
.
35.
Insperger
,
T.
, 2010, “
Full-Discretization and Semi-Discretization for Milling Stability Prediction: Some Comments
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
),
658
662
.
36.
Feng
,
K.
, and
Shi
,
Z.-C.
, 2001,
Mathematical Theory of Elastic Structures
,
Springer
,
Berlin; New York
.
37.
Yang
,
D.
, and
Zhao
,
Z.
, 2006,
The Boundary Element Theory and Application
,
Beijing Institute of Technology Press
,
Beijing, in Chinese
.
38.
Delves
,
L. M.
, and
Mohamed
,
J. L.
, 1985,
Computational Methods for Integral Equations
,
Cambridge University Press
,
Cambridge
.
39.
Li
,
X.
, 2008,
Integral Equations
,
Science Press
,
Beijing, in Chinese
.
40.
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stepan
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
, 2005, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
45
(
7–8
), pp.
769
781
.
41.
Yang
,
W. Y.
,
Cao
,
W.
,
Chung
,
T.-S.
, and
Morris
,
J.
, 2005,
Applied Numerical Methods Using Matlab
,
Wiley-Interscience
,
Hoboken, NJ
.
42.
Farkas
,
M.
, 1994,
Periodic Motions
,
Springer-Verlag
,
New York
.
43.
Serre
,
D.
, 2002,
Matrices: Theory and Applications
,
Springer-Verlag
,
New York
.
44.
Altintas
,
Y.
,
Engin
,
S.
, and
Budak
,
E.
, 1999, “
Analytical Stability Prediction and Design of Variable Pitch Cutters
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
173
178
.
45.
Insperger
,
T.
,
Mann
,
B. P.
,
Stepan
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
25
34
.
46.
Henninger
,
C.
, and
Eberhard
,
P.
, 2008, “
Improving the Computational Efficiency and Accuracy of the Semi-Discretization Method for Periodic Delay-Differential Equations
,”
Eur. J. Mech. A/Solids
,
27
(
6
), pp.
975
985
.
47.
Budak
,
E.
, 2003, “
An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part I: Theory
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
29
34
.
48.
Budak
,
E.
, 2003, “
An Analytical Design Method for Milling Cutters with Nonconstant Pitch to Increase Stability, Part 2: Application
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
35
38
.
You do not currently have access to this content.