A heat transfer model for grinding has been developed based on the finite difference method (FDM). The proposed model can solve transient heat transfer problems in grinding, and has the flexibility to deal with different boundary conditions. The model is first validated by comparing it with the traditional heat transfer model for grinding which assumes the semiinfinite workpiece size and adiabatic boundary conditions. Then it was used to investigate the effects of workpiece size, feed rate, and cooling boundary conditions. Simulation results show that when the workpiece is short or the feed rate is low, transient heat transfer becomes more dominant during grinding. Results also show that cooling in the grinding contact zone has much more significant impact on the reduction of workpiece temperature than that in the leading edge or trailing edge. The model is further applied to investigate the convection heat transfer at the workpiece surface in wet and minimum quantity lubrication (MQL) grinding. Based on the assumption of linearly varying convection heat transfer coefficient in the grinding contact zone, FDM model is able to calculate convection coefficient from the experimentally measured grinding temperature profile. The average convection heat transfer coefficient in the grinding contact zone was estimated as 4.2 × 105 W/m2-K for wet grinding and 2.5 × 104 W/m2-K for MQL grinding using vitrified bond CBN wheels.

References

References
1.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
John Wiley & Sons
,
New York
.
2.
Jaeger
,
J. C.
, 1942, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
,
76
, pp.
203
224
.
3.
Outwater
,
J. O.
, and
Shaw
,
M. C.
, 1952, “
Surface Temperatures in Grinding
,”
Trans. ASME
,
74
, pp.
73
86
.
4.
Hahn
,
R. S.
, 1956, “
The Relation Between Grinding Conditions and Thermal Damage in the Workpiece
,”
Trans. ASME
,
78
, pp.
807
812
.
5.
Snoeys
,
R.
,
Roesems
,
D.
,
Vandeurzen
,
U.
, and
Vanhonacker
,
P.
, 1979, “
Survey on Modal Analysis Applications
,”
CIRP Ann.
,
28
(
2
), pp.
497
510
.
6.
Malkin
,
S.
, 1984, “
Grinding of Metals: Theory and Application
,”
J. Appl. Metalworking
,
3
, pp.
95
109
.
7.
Takazawa
,
K.
, 1972, “
Thermal Aspects of the Grinding Operation
,”
Ind. Diamond Rev.
4
, pp.
143
149
.
8.
Rowe
,
W. B.
,
Pettit
,
J. A.
,
Boyle
,
A.
, and
Moruzzi
,
J. L.
, 1988, “
Avoidance of Thermal Damage in Grinding
,”
CIRP Ann.
,
37
pp.
327
330
.
9.
Shaw
,
M. C.
, 1990, “
A Simplified Approach to Workpiece Temperature in Fine Grinding
,”
CIRP. Ann.
,
39
, pp.
345
347
.
10.
Hahn
,
R. S.
, 1962, “
On the Nature of the Grinding Process
,”
Proceedings of the 3rd Machine Tool Design and Research Conference
, pp.
129
154
.
11.
Hahn
,
R. S.
, 1966, “
On the Mechanics of the Grinding Process Under Plunge Cut Conditions
,”
J. Eng. Ind.
,
88
, pp.
72
80
.
12.
Liao
,
Y. S.
,
Luo
,
S. Y.
, and
Yang
,
T. H.
, 2000, “
Thermal Model of the Wet Grinding Process
,”
J. Mater. Process. Technol.
,
101
(
1
), pp.
137
145
.
13.
Maksoud
,
T. M. A.
, 2005, “
Heat Transfer Model for Creep-Feed Grinding
,”
J. Mater. Process. Technol.
,
168
(
3
), pp.
448
463
.
14.
Rowe
,
W. B.
,
Black
,
S. C. E.
, and
Mills
,
B.
, 1996, “
Temperature Control in CBN Grinding
,”
Int. J. Adv. Manuf. Technol.
,
12
, pp.
387
392
.
15.
Lavine
,
A. S.
, 1988, “
A Simple Model for Convective Cooling During the Grinding Process
,”
J. Eng. Ind.
,
110
pp.
1
6
.
16.
Lavine
,
A. S.
, and
Jen
,
T. C.
, 1991, “
Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel, and Fluid
,”
J. Heat Transfer
,
113
pp.
296
303
.
17.
Lavine
,
A. S.
, and
Jen
,
T. C.
, 1991, “
Coupled Heat Transfer to Workpiece, Wheel, and Fluid in Grinding, and the Occurrence of Workpiece Burn
,”
Int. J. Heat Mass Transfer
,
34
, pp.
983
992
.
18.
Jen
,
T. C.
, and
Lavine
,
A. S.
, 1995, “
A Variable Heat Flux Model of Heat Transfer in Grinding: Model Development
,”
J. Heat Transfer
,
117
(
2
), pp.
473
478
.
19.
Demetriou
,
M. D.
, and
Lavine
,
A. S.
, 2000, “
Thermal Aspects of Grinding: The Case of Upgrinding
,”
J. Manuf. Sci. Eng.
,
122
(
4
), pp.
605
611
.
20.
Ju
,
Y.
,
Farris
,
T. N.
, and
Chandrasekar
,
S.
, 1998, “
Theoretical Analysis of Heat Partition and Temperatures in Grinding
,”
J. Tribol.
,
120
(
4
), pp.
789
794
.
21.
Kohli
,
S. P.
,
Guo
,
C.
, and
Malkin
,
S.
, 1995, “
Energy Partition for Grinding With Aluminum Oxide and CBN Abrasive Wheels
,”
J. Eng. Ind.
,
117
pp.
160
168
.
22.
Guo
,
C.
, and
Malkin
,
S.
, 1995, “
Analysis of Energy Partition in Grinding
,”
J. Eng. Ind.
,
117
, pp.
55
61
.
23.
Guo
,
C.
, and
Malkin
,
S.
, 1996, “
Inverse Heat Transfer Analysis of Grinding, Part 1: Methods
,”
J. Eng. Ind.
,
118
(
1
) (1996)
137
142
.
24.
Guo
,
C.
, and
Malkin
,
S.
, 1996, “
Inverse Heat Transfer Analysis of Grinding, Part 2: Applications
,”
J. Eng. Ind.
,
118
(
1
), pp.
143
149
.
25.
Hong
,
K. K.
, and
Lo
,
C. Y.
, 2000, “
Inverse Analysis for the Heat Conduction During a Grinding Process
,”
J. Mater. Process. Technol.
,
105
(
1
), pp.
87
94
.
26.
Wang
,
C. C.
, and
Chen
,
C. K.
, 2002, “
Three-Dimensional Inverse Heat Transfer Analysis During the Grinding Process
,”
J. Mech. Eng. Sci.
,
216
pp.
199
214
.
27.
Kim
,
H. J.
,
Kim
,
N. K.
, and
Kwak
,
J. S.
, 2006, “
Heat Flux Distribution Model by Sequential Algorithm of Inverse Heat Transfer for Determining Workpiece Temperature in Creep Feed Grinding
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
2086
2093
.
28.
Guo
,
C.
, and
Malkin
,
S.
, 1995, “
Analysis of Transient Temperatures in Grinding
,”
J. Eng. Ind.
,
117
, pp.
571
577
.
29.
Mahdi
,
M.
, and
Zhang
,
L.
, 1995, “
The Finite Element Thermal Analysis of Grinding Processes by ADINA
,”
Comput. Struct.
,
56
, pp.
313
320
.
30.
Biermann
,
D.
, and
Schneider
,
M.
, 1997, “
Modeling and Simulation of Workpiece Temperature in Grinding by Finite Element Analysis
,”
Mach. Sci. Technol.
,
1
(
2
), pp.
173
183
.
31.
Wang
,
L.
,
Qin
,
Y.
,
Liu
,
Z. C.
,
Ge
,
P. Q.
, and
Gao
,
W.
, 2003, “
Computer Simulation of a Workpiece Temperature Field During the Grinding Process
,”
Proc. Inst. Mech. Eng., Part B
,
217
(
7
), pp.
953
959
.
32.
Mamalis
,
A. G.
,
Kundrak
,
J.
,
Manolakos
,
D. E.
,
Gyani
,
K.
, and
Markopoulos
,
A.
, 2003, “
Thermal Modeling of Surface Grinding Using Implicit Finite Element Techniques
,”
Int. J. Adv. Manuf. Technol.
,
21
(
12
), pp.
929
934
.
33.
Lefebvre
,
A.
,
Vieville
,
P.
,
Lipinski
,
P.
, and
Lescalier
,
C.
, 2006, “
Numerical Analysis of Grinding Temperature Measurement by the Foil/Workpiece Thermocouple Method
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1716
1726
.
34.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
35.
Jin
,
T.
,
Stephenson
,
D. J.
, and
Rowe
,
W. B.
, 2001, “
Estimation of the Convection Heat Transfer Coefficient of Coolant Within the Grinding Zone
,”
Proc. Inst. Mech. Eng., Part B
,
217
, pp.
397
407
.
36.
Shen
,
B.
,
Xiao
,
G.
,
Guo
,
C.
,
Malkin
,
S.
, and
Shih
,
A. J.
, 2008, “
Thermocouple Fixation Method for Grinding Temperature Measurement
,”
ASME J. Manuf. Sci. Eng.
,
130
, p.
051014
.
37.
Shen
,
B.
, and
Shih
,
A. J.
, 2009, “
Minimum Quantity Lubrication (MQL) Grinding Using Vitrified CBN Wheels
,”
Trans. NAMRI/SME
,
37
, pp.
129
136
.
You do not currently have access to this content.