Laser cutting of small diameter holes in alumina tiles is carried out. Temperature and stress fields are predicted numerically using the ABAQUS finite element code. The cut sections are examined by incorporating scanning electron microscope and optical microscope. The residual stress developed in the cutting section is determined using the X-ray diffraction technique. It is found that high residual stresses are formed in the cutting section, and predictions agree well with the experimental results. The laser cut edges are found to be free from the large cracks. However, interconnected shallow cracks are observed at the hole cut surface.

1.
Pereles-Santiago
,
V.
,
Washington
,
M.
,
Brugan
,
P.
,
Cai
,
G.
,
Akarapu
,
R.
,
Pulford
,
S.
, and
Segall
,
A. E.
, 2005, “
Faster and Damage-Reduced Laser Cutting of Thick Ceramics Using a Simultaneous Prescore Approach
,”
J. Laser Appl.
1042-346X,
17
, pp.
219
224
.
2.
Tsai
,
C. -H.
, and
Chen
,
C. -J.
, 2003, “
Formation of the Breaking Surface of Alumina in Laser Cutting With a Controlled Fracture Technique
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
217
(
4
), pp.
489
497
.
3.
Biswas
,
R.
,
Kuar
,
A. S.
, and
Mitra
,
S.
, 2008, “
Influence of Machining Parameters on Surface Roughness in Nd:YAG Laser Micro-Cutting of Alumina-Aluminium Interpenetrating Phase Composite
,”
International Journal of Surface Science and Engineering
,
2
(
3/4
), pp.
252
264
.
4.
Molian
,
R.
,
Shrotriya
,
P.
, and
Molian
,
P.
, 2008, “
Thermal Stress Fracture Mode of CO2 Laser Cutting of Aluminum Nitride
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
39
(
7–8
), pp.
725
733
.
5.
Quintero
,
F.
,
Pou
,
J.
,
Lusquinos
,
F.
,
Boutinguiza
,
M.
,
Soto
,
R.
,
Perez-Amor
,
M.
, and
Wagner
,
F.
, 2004, “
Cutting of Mullite-Alumina Ceramic Plates With CO2 Laser
,”
ICALEO 2004—23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings
, San Francisco, CA.
6.
Samant
,
A. N.
, and
Dahotre
,
N. B.
, 2009, “
Laser Machining of Structural Ceramics—A Review
,”
J. Eur. Ceram. Soc.
0955-2219,
29
, pp.
969
993
.
7.
ABAQUS Theory Manual
, Version 6.2,
ABAQUS Inc.
,
Pawtucket, RI
.
8.
Kristiansson
,
J. O.
, 1984, “
Thermomechanical Behavior of the Solidifying Shell Within Continuous-Casting Billet Molds—A Numerical Approach
,”
J. Therm. Stresses
0149-5739,
7
, pp.
209
226
.
9.
Li
,
C.
, and
Thomas
,
B. G.
, 2004, “
Thermo-Mechanical Finite-Element Model of Shell Behavior in Continuous Casting of Steel
,”
Metall. Mater. Trans. B
1073-5615,
35B
(
6
), pp.
1151
1172
.
10.
Anand
,
L.
, 1982, “
Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures
,”
ASME J. Eng. Mater. Technol.
0094-4289,
104
, pp.
12
17
.
11.
Mendelson
,
A.
, 1983,
Plasticity: Theory and Applications
,
Krieger
,
Malabar, FL
.
13.
da Silva
,
S. L. R.
,
Kerber
,
L. O.
,
Amaral
,
L.
, and
dos Santos
,
C. A.
, 1999, “
X-Ray Diffraction Measurements of Plasma Nitrided Ti-6Al-4V
,”
Surf. Coat. Technol.
0257-8972,
116–119
, pp.
342
346
.
14.
Damani
,
R. J.
, and
Makroczy
,
P.
, 2000, “
Heat Treatment Induced Phase and Microstructural Development in Bulk Plasma Sprayed Alumina
,”
J. Eur. Ceram. Soc.
0955-2219,
20
, pp.
867
88
.
15.
Krishnan
,
R.
,
Dash
,
S.
,
Rao
,
C. B.
,
Rao
,
R. V. S.
,
Tyagi
,
A. K.
, and
Raj
,
B.
, 2001, “
Laser Induced Structural and Microstructural Transformations of Plasma Sprayed Al2O3 Coatings
,”
Scr. Mater.
1359-6462,
45
, pp.
693
700
.
You do not currently have access to this content.