Industrial glass blowing is an essential stage of manufacturing glass containers, i.e., bottles or jars. An initial glass preform is brought into a mold and subsequently blown into the mold shape. Over the past few decades, a wide range of numerical models for forward glass blow process simulation has been developed. A considerable challenge is the inverse problem: to determine an optimal preform from the desired container shape. A simulation model for blowing glass containers based on finite element methods has previously been developed (Giannopapa, 2008, “Development of a Computer Simulation Model for Blowing Glass Containers,” ASME J. Manuf. Sci. Eng., 130, p. 041003; Giannopapa and Groot, 2007, “A Computer Simulation Model for the Blow-Blow Forming Process of Glass Containers,” 2007 ASME Pressure Vessels and Piping Conference and 8th International Conference on CREEP and Fatigue at Elevated Temperature). This model uses level set methods to track the glass-air interfaces. The model described in a previous paper of the authors showed how to perform the forward computation of a final bottle from the given initial preform without using optimization. This paper introduces a method to optimize the shape of the preform combined with the existing simulation model. In particular, the new optimization method presented aims at minimizing the error in the level set representing the glass-air interfaces of the desired container. The number of parameters used for the optimization is restricted to a number of control points for describing the interfaces of the preform by parametric curves, from which the preform level set function can be reconstructed. Numerical applications used for the preform optimization method presented are the blowing of an axisymmetrical ellipsoidal container and an axisymmetrical jar.

1.
Cormeau
,
A.
,
Cormeau
,
I.
, and
Roose
,
J.
, 1984, “
Numerical Simulation of Glass-Blowing
,”
Numerical Analysis of Forming Processes
,
J. F. T.
Pittman
,
O. C.
Zienkiewicz
,
R. D.
Wood
, and
J. M.
Alexander
, eds.,
Wiley
,
New York
, pp.
219
237
.
2.
Cséar de Sá
,
J. M. A.
, 1986, “
Numerical Modelling of Glass Forming Processes
,”
Eng. Comput.
0177-0667,
3
, pp.
266
275
.
3.
Hyre
,
M.
, 2002, “
Numerical Simulation of Glass Forming and Conditioning
,”
J. Am. Ceram. Soc.
0002-7820,
85
(
5
), pp.
1047
1056
.
4.
César de Sá
,
J. M. A.
,
Natal Jorge
,
R. M.
,
Silva
,
C. M. C.
, and
Cardoso
,
R. P. R.
, “
A Computational Model for Glass Container Forming Processes
,”
Europe Conference on Computational Mechanics Solids, Structures and Coupled Problems in Engineering
.
5.
Giannopapa
,
C. G.
, 2008, “
Development of a Computer Simulation Model for Blowing Glass Containers
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
041003
.
6.
Giannopapa
,
C. G.
, and
Groot
,
J. A. W. M.
, 2007, “
A Computer Simulation Model for the Blow-Blow Forming Process of Glass Containers
,”
2007 ASME Pressure Vessels and Piping Conference and 8th International Conference on CREEP and Fatigue at Elevated Temperature
.
7.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods
,
Cambridge University Press
,
Cambridge
.
8.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
0021-9991,
114
, pp.
146
159
.
9.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
, 1995, “
A Fast Level Set Method for Propagating Interfaces
,”
J. Comput. Phys.
0021-9991,
118
, pp.
269
277
.
10.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Merriman
,
B.
, and
Osher
,
S.
, 1996, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
0021-9991,
124
, pp.
449
464
.
11.
Moreau
,
P.
,
Lochegnies
,
D.
, and
Oudin
,
J.
, 1999, “
Optimum Tool Geometry for Flat Glass Pressing
,”
Int. J. Form. Processes
1292-7775,
2
, pp.
81
94
.
12.
Choi
,
J.
,
Ha
,
D.
,
Kim
,
J.
, and
Grandhi
,
R. V.
, 2004, “
Inverse Design of Glass Forming Process Simulation Using an Optimization Technique and Distributed Computing
,”
J. Mater. Process. Technol.
0924-0136,
148
, pp.
342
352
.
13.
Moreau
,
P.
,
Lochegnies
,
D.
, and
Oudin
,
J.
, 1998, “
An Inverse Method for Prediction of the Prescribed Temperature Distribution in the Creep Forming Process
,”
Proc. Inst. Mech. Eng. J Mech. Eng. Sci
,
212
, pp.
7
11
.
14.
Lochegnies
,
D.
,
Moreau
,
P.
, and
Guilbaut
,
R.
, 2005, “
A Reverse Engineering Approach to the Design of the Blank Mould for the Glass Blow and Blow Process
,”
Glass Technol.
0017-1050,
46
(
2
), pp.
116
120
.
15.
Moreau
,
P.
,
Marechal
,
C.
, and
Lochegnies
,
D.
, 2001, “
Optimum Parison Shape for Glass Blowing
,”
Proceedings of the 19th International Congress on Glass
, pp.
548
549
.
16.
Bernard
,
T.
, and
Ebrahimi Moghaddam
,
E.
, 2006, “
Nonlinear Model Predictive Control of a Glass Forming Process Based on a Finite Element Model
,”
Proceedings of the 2006 IEEE International Conference on Control Applications
.
17.
DiRaddo
,
R. W.
, and
Garcia-Rejon
,
A.
, 1993, “
Profile Optimization for the Prediction of Initial Parison Dimensions From Final Blow Moulded Part Specifications
,”
Comput. Chem. Eng.
0098-1354,
17
(
8
), pp.
751
764
.
18.
Lee
,
D. K.
, and
Soh
,
S. K.
, 1996, “
Prediction of Optimal Preform Thickness Distribution in Blow Molding
,”
Polym. Eng. Sci.
0032-3888,
36
(
11
), pp.
1513
1520
.
19.
Laroche
,
D.
,
Kabanemi
,
K. K.
,
Pecora
,
L.
, and
Diraddo
,
R. W.
, 1999, “
Integrated Numerical Modeling of the Blow Molding Process
,”
Polym. Eng. Sci.
0032-3888,
39
(
7
), pp.
1223
1233
.
20.
Huang
,
G. Q.
, and
Huang
,
H. X.
, 2007, “
Optimizing Parison Thickness for Extrusion Blow Molding by Hybrid Method
,”
J. Mater. Process. Technol.
0924-0136,
182
, pp.
512
518
.
21.
Gauvin
,
C.
,
Thibault
,
F.
, and
Laroche
,
D.
, 2003, “
Optimization of Blow Molded Part Performance Through Process Simulation
,”
Polym. Eng. Sci.
0032-3888,
43
(
7
), pp.
1407
1414
.
22.
Thibault
,
F.
,
Malo
,
A.
,
Lanctot
,
B.
, and
Diraddo
,
R.
, 2007, “
Preform Shape and Operating Condition Optimization for the Stretch Blow Molding Process
,”
Polym. Eng. Sci.
0032-3888,
47
, pp.
289
301
.
23.
Ranjbar
,
A. A.
, and
Mirsadeghi
,
M.
, 2008, “
An Inverse Estimation of Initial Temperature Profile in a Polymer Process
,”
Polym. Eng. Sci.
0032-3888,
48
(
1
), pp.
133
140
.
24.
Bordival
,
M.
,
Schmidt
,
F.
,
Le Maoult
,
Y.
, and
Velay
,
V.
, 2009, “
Optimization of Preform Temperature Distribution for the Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling
,”
Polym. Eng. Sci.
0032-3888,
49
(
4
), pp.
783
793
.
25.
Fourment
,
L.
, and
Chenot
,
J. L.
, 1996, “
Optimal Design for Non-Steady-State Metal Forming Processes—I. Shape Optimization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
33
50
.
26.
Fourment
,
L.
,
Balan
,
T.
, and
Chenot
,
J. L.
, 1996, “
Optimal Design for Non-Steady-State Metal Forming Processes—II. Application of Shape Optimization in Forging
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
51
65
.
27.
Srikanth
,
A.
, and
Zabaras
,
N.
, 2000, “
Shape Optimization and Preform Design in Metal Forming Processes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1859
1901
.
28.
Zhao
,
G.
,
Wright
,
E.
, and
Grandhi
,
R. V.
, 1997, “
Preform Die Shape Design in Metal Forming Using an Optimization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
1213
1230
.
29.
Chung
,
S. H.
, and
Hwang
,
S. M.
, 1998, “
Optimal Process Design in Non-Isothermal, Non-Steady Metal Forming by the Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
1343
1390
.
30.
Zhao
,
X.
,
Zhao
,
G.
,
Wang
,
G.
, and
Wang
,
T.
, 2002, “
Numerical Modeling of Dynamic Sealing Behaviors of Spiral Groove Gas Face Seals
,”
J. Mater. Process. Technol.
0924-0136,
128
, pp.
25
32
.
31.
Ou
,
H.
,
Armstrong
,
C. G.
, and
Price
,
M. A.
, 2003, “
Die Shape Optimisation in Forging of Aerofoil Sections
,”
J. Mater. Process. Technol.
0924-0136,
132
, pp.
21
27
.
32.
Shim
,
H.
, 2003, “
Optimal Preform Design for the Free Forging of 3D Shapes by the Sensitivity Method
,”
J. Mater. Process. Technol.
0924-0136,
134
, pp.
99
107
.
33.
Ponthot
,
J. P.
, and
Kleinermann
,
J. P.
, 2005, “
Optimisation Methods for Initial/Tool Shape Optimisation in Metal Forming Processes
,”
Int. J. Veh. Des.
0143-3369,
39
(
1/2
), pp.
14
24
.
34.
Boffi
,
D.
,
Brezzi
,
F.
, and
Fortin
,
M.
, 2008. “
Finite Elements for the Stokes Problem
,”
Mixed Finite Elements, Compatibility Conditions, and Applications (FM 2009)
(
Lecture Notes in Mathematics
Vol.
1939
),
D.
Boffi
and
L.
Gastaldi
, eds.,
Springer
,
Berlin
, pp.
45
100
.
35.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
, 2005, “
Sundials: Suite of Nonlinear and Differential/Algebraic Equation Solvers
,”
ACM Trans. Math. Softw.
0098-3500,
31
, pp.
363
396
.
36.
Allaart-Bruin
,
S. M. A.
,
Linden
,
B. J. v. d.
, and
Mattheij
,
R. M. M.
, 2006, “
Modelling the Glass Press-Blow Process
,”
Mathematics in Industry/The European Consortium for Mathematics in Industry
,
Progress in Industrial Mathematics at ECMI 2004, Proceedings of the 13th European Conference on Mathematics for Industry
, Eindhoven, The Netherlands, Jun. 21–25, Vol. 8,
A.
Di Bucchianico
,
R. M. M.
Mattheij
, and
M. A.
Peletier
, eds.,
Springer
,
Berlin
, pp.
351
355
.
37.
Kimmel
,
R.
, and
Sethian
,
J. A.
, 1998, “
Computing Geodesic Paths on Manifolds
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
95
, pp.
8431
8435
.
38.
Carroll
,
C. W.
, 1961, “
The Created Response Surface Technique for Optimizing Nonlinear Restrained Systems
,”
Oper. Res.
0030-364X,
9
, pp.
169
184
.
39.
Schnur
,
D. S.
, and
Zabaras
,
N.
, 1992, “
An Inverse Method for Determining Elastic Material Properties and a Material Interface
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
2039
2057
.
40.
Gelin
,
J. C.
, and
Ghouati
,
O.
, 1994, “
An Inverse Method for Determining Viscoplastic Properties of Aluminium Alloys
,”
J. Mater. Process. Technol.
0924-0136,
45
, pp.
435
440
.
41.
Marquardt
,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
J. Soc. Ind. Appl. Math.
0368-4245,
11
(
2
), pp.
431
440
.
42.
Broyden
,
C. G.
, 1965, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
0025-5718,
19
(
92
), pp.
577
593
.
43.
Broyden
,
C. G.
, 1967, “
Quasi-Newton Methods and Their Application to Function Minimisation
,”
Math. Comput.
0025-5718,
21
(
99
), pp.
368
381
.
44.
Moré
,
J. J.
, and
Trangenstein
,
J. A.
, 1976, “
On the Global Convergence of Broyden’s Method
,”
Math. Comput.
0025-5718,
30
(
135
), pp.
523
540
.
45.
Dennis
,
J. E.
, and
Schnabel
,
R. B.
, 1996,
Numerical Methods for Unconstrained Optimization and Nonlinear Equations
,
SIAM
,
Philadelphia, PA
.
46.
Martinez
,
J. M.
, 2000, “
Practical Quasi-Newton Methods for Solving Nonlinear Systems
,”
J. Comput. Appl. Math.
0377-0427,
124
, pp.
97
121
.
47.
Martinez
,
J. M.
, and
Ochi
,
L. S.
, 1982, “
Sobre dois métodos de broyden
,”
Mathemática Aplicada e Computacional
,
1
, pp.
135
141
.
48.
Ruan
,
B.
, 2002, “
Numerical Modeling of Dynamic Sealing Behaviors of Spiral Groove Gas Face Seals
,”
ASME J. Tribol.
0742-4787,
124
, pp.
186
195
.
49.
Dierckx
,
P.
, 1993,
Curve and Surface Fitting With Splines
,
Oxford Science
,
New York
.
50.
Prautzsch
,
H.
,
Boehm
,
W.
, and
Paluszny
,
M.
, 2002,
Bézier and B-Spline Techniques
,
Springer
,
Berlin
.
You do not currently have access to this content.