Multi-axis slicing for solid freeform fabrication manufacturing processes can yield nonuniform thickness layers or three-dimensional (3D) layers. The traditional parallel layer construction approach to building such layers leads to the so-called staircase effect, which requires machining or other postprocessing to form the desired shape. This paper presents a direct 3D layer deposition approach that uses an empirical model to predict the layer thickness. The toolpath between layers is not parallel; instead, it follows the final shape of the designed geometry and the distance between the toolpath in the adjacent layers varies at different locations. Directly depositing 3D layers not only eliminates the staircase effect but also improves manufacturing efficiency by shortening the deposition and machining times. Simulation and experimental studies are conducted that demonstrate these advantages. Thus, the 3D deposition method is a beneficial addition to the traditional parallel deposition method.

1.
Choi
,
J.
, 2002, “
Process and Properties Control in Laser Aided Direct Metal/Materials Deposition Process
,”
Proceedings of IMECE
, New Orleans, LA, Nov. 17–22, pp.
1
9
.
2.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smegeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
, 1996, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12–14, pp.
125
131
.
3.
Hu
,
D.
,
Mei
,
H.
, and
Kovacevic
,
R.
, 2001, “
Closed Loop Control of 3D Laser Cladding Based on Infrared Sensing
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 6–8, pp.
129
137
.
4.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
, 1995, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
1355-2546,
1
(
1
), pp.
26
36
.
5.
Dolenc
,
A.
, and
Mäkelä
,
I.
, 1994, “
Slicing Procedures for Layered Manufacturing Techniques
,”
CAD
0010-4485,
26
, pp.
119
126
.
6.
Yang
,
Y.
,
Fuh
,
J. Y. H.
,
Loh
,
H. T.
, and
Wong
,
Y. S.
, 2003, “
A Volumetric Difference-Based Adaptive Slicing and Deposition Method for Layered Manufacturing
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
586
594
.
7.
Singh
,
P.
, and
Dutta
,
D.
, 2001, “
Multi-Direction Slicing for Layered Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
129
142
.
8.
Ruan
,
J.
,
Sparks
,
T.
,
Panackal
,
A.
,
Liou
,
F. W.
,
Eiamsa-ard
,
K.
,
Slatter
,
K.
,
Chou
,
H.
, and
Kinsella
,
M.
, 2007, “
Automated Slicing for a Multiaxis Metal Deposition System
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
, pp.
303
310
.
9.
Hua
,
Y.
, 2004, “
Adaptive Layer Process Control of Laser Aided Direct Metal/Material Deposition Process
,” Ph.D. thesis, Missouri University of Science and Technology, Rolla, MO.
10.
Ruan
,
J.
,
Eiamsa-ard
,
K.
, and
Liou
,
F. W.
, 2005, “
Automatic Process Planning and Toolpath Generation of a Multi-Axis Hybrid Manufacturing System
,”
J. Manuf. Process.
1526-6125,
7
(
1
), pp.
57
68
.
11.
Steen
,
W.
, 1998,
Laser Material Processing
,
2nd ed.
,
Springer
,
New York
.
12.
Pinkerton
,
A.
, and
Li
,
L.
, 2004, “
Modeling the Geometry of a Moving Laser Melt Pool and Deposition Track via Energy and Mass Balances
,”
J. Phys. D: Appl. Phys.
0022-3727,
37
, pp.
1885
1895
.
13.
Tang
,
L.
,
Ruan
,
J.
,
Landers
,
R. G.
, and
Liou
,
F. W.
, 2008, “
Variable Powder Flow Rate Control in Laser Metal Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
4
), p.
041016
.
14.
Tang
,
L.
,
Ruan
,
J.
,
Sparks
,
T. E.
,
Landers
,
R. G.
, and
Liou
,
F. W.
, 2009, “
Layer-to-Layer Height Control of Laser Metal Deposition Processes
,”
American Control Conference
, St. Louis, MO, Jun. 10–12.
You do not currently have access to this content.