The design of an industrial robot involves a number of conflicting objectives in general. A parallel kinematic machine (PKM) is known to achieve high precision and heavy load capacity but with the sacrifice of large workspace and high dexterity. Therefore, existing PKMs are mostly dedicated to a specific task with relatively poor adaptability to task variations. In this paper, the concept of an adjustable platform is proposed to enhance the adaptability of a PKM for various tasks. It is demonstrated that the adjustment of the dimensions of a base platform or end-effector platform has a significant impact on the performance of a PKM including its workspace and overall stiffness distribution. Both offline and online adjustment modes are presented. The offline adjustment brings a new dimension for reconfigurability and thus increases the versatility of a parallel robot for different tasks. The online adjustment turns a parallel robot into a redundant PKM, and therefore its overall performance against task requirements can be improved. A planar PKM and a Stewart robot with an adjustable platform are used as case studies in order to demonstrate the advantages of the proposed concept.

1.
Bi
,
Z. M.
,
Lang
,
S. Y. T.
,
Shen
,
W.
, and
Wang
,
L.
, 2008, “
Reconfigurable Manufacturing Systems: The State of the Art
,”
Int. J. Prod. Res.
0020-7543,
46
, pp.
967
992
.
2.
Saenz de Ugarte
,
B.
,
Artiba
,
A.
, and
Pellerin
,
R.
, 2009, “
Manufacturing Execution System—A Literature Review
,”
Prod. Plan. Control
0953-7287,
20
(
6
), pp.
525
539
.
3.
Bi
,
Z. M.
,
Lang
,
S. Y. T.
,
Verner
,
M.
, and
Orban
,
P.
, 2008, “
Development of Reconfigurable Machines
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
39
(
11–12
), pp.
1227
1251
.
4.
Liu
,
H.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
,
Li
,
M.
, and
Hu
,
J.
, 2007, “
Kinematic Design of 5-DOF Hybrid Robot With Large Workspace/Limb-Stroke Ratio
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
530
537
.
5.
Tosi
,
D.
,
Legnani
,
G.
,
Pedrocchi
,
N.
,
Righettini
,
P.
, and
Giberti
,
H.
, 2010, “
Cheope: A New Reconfigurable Redundant Manipulator
,”
Mech. Mach. Theory
0094-114X,
45
(
4
), pp.
611
626
.
6.
Chang
,
T. -H.
,
Morihari
,
I.
,
Inaaki
,
K.
, and
Hsu
,
J. -J.
, 2000, “
The Development of a Parallel Mechanism of 5 DOF Hybrid Machine Tools
,”
Proceedings of the Parallel Kinematic Machines
, pp.
79
85
.
7.
Bi
,
Z. M.
,
Zhang
,
W. J.
,
Chen
,
I. -M.
, and
Lang
,
S. Y. T.
, 2007, “
Automated Generation of the D-H Parameters for Configuration Design of Modular Manipulators
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
23
(
5
), pp.
553
562
.
8.
Siddiqi
,
A.
, and
Olivier
,
L. de W.
, 2008, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
101102
.
9.
Mohamed
,
R. P.
,
Xi
,
F.
, and
Daniel
,
A.
, 2010, “
Module-Based Static Structural Design of Modular Reconfigurable Robot
,”
ASME J. Mech. Des.
0161-8458,
132
(
1
), p.
014501
.
10.
Aghili
,
F.
, 2009, “
A Reconfigurable Robot With Lockable Cylindrical Joints
,”
IEEE Trans. Robotics
1552-3098,
25
(
4
), pp.
785
797
.
11.
Gallardo-Alvarado
,
J.
,
Aguilar-Nájera
,
C. R.
,
Casique-Rosas
,
L.
,
Pérez-González
,
L.
, and
Rico-Martínez
,
J. M.
, 2008, “
Solving the Kinematics and Dynamics of a Modular Spatial Hyper-Redundant Manipulator by Means of Screw Theory
,”
Multibody Syst. Dyn.
1384-5640,
20
(
4
), pp.
307
325
.
12.
Bi
,
Z. M.
,
Lang
,
Y. T.
,
Verner
,
M.
, and
Orban
,
P.
, 2007, “
Integrated Design Toolbox for Tripod-Based Parallel Kinematic Machines
,”
ASME J. Mech. Des.
0161-8458,
129
(
8
), pp.
799
808
.
14.
Ji
,
Z.
, and
Song
,
P.
, 1998, “
Design of a Reconfigurable Platform Manipulator
,”
J. Rob. Syst.
0741-2223,
15
(
6
), pp.
341
346
.
15.
Merlet
,
J. P.
, 1999, “
The Importance of Optimal Design for Parallel Structures
,”
Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.
Springer-Verlag
,
Berlin
, pp.
99
110
.
16.
Weck
,
M.
, and
Staimer
,
D.
, 2002, “
Parallel Kinematic Machine Tools–Current State and Future Potentials
,”
CIRP Ann.
0007-8506,
51
(
2
), pp.
671
683
.
17.
Merlet
,
J. P.
, 2000,
Parallel Robots
,
Kluwer Academic
,
The Netherlands
.
18.
Bande
,
P.
,
Seibt
,
M.
,
Uhlmann
,
E.
,
Saha
,
S. K.
, and
Rao
,
P. V. M.
, 2005, “
Kinematics Analysis of Dodekapod
,”
Mech. Mach. Theory
0094-114X,
40
(
6
), pp.
740
756
.
19.
Nakamura
,
Y.
, and
Ghodoussi
,
M.
, 1989, “
Dynamics Computation of Closed-Link Robot Mechanisms With Nonredundant and Redundant Actuators
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
(
3
), pp.
294
302
.
20.
Tonshoff
,
H. K.
,
Grendel
,
H.
, and
Kaak
,
R.
, 1999, “
Structure and Characteristics of the Hybrid Manipulator Georg V
,”
Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
,
Smith
, eds.
Springer-Verlag
,
Berlin
, pp.
365
376
.
21.
Kim
,
J.
,
Hwang
,
J. C.
,
Kim
,
J. S.
,
Inrascu
,
C. C.
,
Park
,
F. C.
, and
Cho
,
Y. M.
, 2002, “
Eclipse II: A New Parallel Mechanism Enabling Continuous 360-Degree Spinning Plus Three-Axis Translation Motions
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
367
373
.
22.
Wang
,
Y.
,
Newman
,
W. S.
, and
Stoughton
,
R. S.
, 2000, “
Workspace Analysis of the ParaDex Robot—A Novel, Closed-Chain, Kinematically-Redundant Manipulator
,”
Proceedings of the IEEE, International Conference on Robotics and Automation
, pp.
2392
2397
.
23.
Tsai
,
L. W.
, 1999, “
Systematic Enumeration of Parallel Manipulators
,”
Parallel Kinematic Machines: Theoretical Aspects and Industrial Requirements
,
C. R.
Boër
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer-Verlag
,
Berlin
, pp.
33
49
.
24.
Gosselin
,
C. M.
, 1990, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
377
382
.
25.
Merlet
,
J. P.
, 1996, “
Redundant Parallel Manipulators
,”
Journal of Laboratory Robotics and Automation
1098-2728,
8
, pp.
17
24
.
26.
Liu
,
G. F.
,
Wu
,
Y. L.
,
Kuen
,
Y. Y.
, and
Li
,
Z. X.
, 2001, “
Analysis and Control of Redundant Parallel Manipulators
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
3748
3754
.
You do not currently have access to this content.