The initial blank in the deep drawing process has a simple shape. After drawing, its perimeter shape becomes very complex. If the initial blank shape is designed in such a way that it is formed into the desired shape after the drawing process, not only does it reduces the time of trimming process but it also decreases the raw material needed substantially. In this paper, the genetically optimized neural network system (GONNS) is proposed as a tool to predict the initial blank shape for the desired final shape. Artificial neural networks (ANNs) represent the final blank shape after a training process and genetic algorithms find the optimum initial blank. The finite element method is employed for simulating the multilayer plate deep drawing process to provide training data for ANN. The GONNS results were verified through experiment in which the error was found to be about 0.2 mm. At last, variations of deformation force, thickness distribution, and thickness strain distribution were investigated using optimum blank. The results show 12% reduction in deformation force and more uniform thickness distribution as well as more consistent thickness strain distribution in the optimum blank shape.

1.
Kim
,
J. K.
, and
Yu
,
T. X.
, 1997, “
Forming and Failure Behavior of Coated, Laminated and Sandwiched Sheet Metals: A Review
,”
J. Mater. Process. Technol.
0924-0136,
63
, pp.
33
42
.
2.
Yoshida
,
F.
, 1997, “
Deformation and Fracture of Sheet Metal Laminates in Plastic Forming
,”
Proceedings of the Fourth International Conference on Composite Engineering
, pp.
61
64
.
3.
Hwang
,
Y. M.
,
Hsu
,
H. H.
, and
Lee
,
H. J.
, 1995, “
Analysis of Sandwich Sheet Rolling by Stream Function Method
,”
Int. J. Mech. Sci.
0020-7403,
37
(
3
), pp.
297
315
.
4.
Hwang
,
Y. M.
, and
Kiuchi
,
M.
, 1992, “
Analysis of Asymmetrical Complex Rolling of Multi-Layer Sheet by Upper Bound Method
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
13
(
1
), pp.
33
45
.
5.
Ku
,
T. W.
,
Lim
,
H. J.
,
Choi
,
H. H.
,
Wang
,
S. M. H.
, and
Kang
,
B. S.
, 2001, “
Implementation of Backward Tracing Scheme of the FEM to Blank Design in Sheet Metal Forming
,”
J. Mater. Process. Technol.
0924-0136,
111
, pp.
90
97
.
6.
Parsa
,
M. H.
, and
Pournia
,
P.
, 2007, “
Optimization of Initial Blank Shape Predicted Based on Inverse Finite Element Method
,”
Journal of Finite Element Analysis & Design
,
43
, pp.
218
233
.
7.
Padmanabhan
,
R.
,
Oliveira
,
M. C.
,
Baptista
,
A. J.
,
Alves
,
J. L.
, and
Menezes
,
L. F.
, 2009, “
Numerical Study on the Influence of Initial Anisotropy on Optimal Blank Shape
,”
Journal of Finite Element Analysis & Design
,
45
(
2
), pp.
71
80
.
8.
Guo
,
Y. Q.
,
Batoz
,
J. L.
,
Naceur
,
H.
,
Bouabdallah
,
S.
,
Mercier
,
F.
, and
Barlet
,
O.
, 2000, “
Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach
,”
Journal of Computers & Structures
,
78
(
1–3
), pp.
133
148
.
9.
Padmanabhan
,
R.
,
Oliveira
,
M. C.
,
Baptista
,
A. J.
,
Alves
,
J. L.
, and
Menezes
,
L. F.
, 2009, “
Blank Design for Deep Drawn Parts Using Parametric NURBS Surfaces
,”
J. Mater. Process. Technol.
0924-0136,
209
(
5
), pp.
2402
2411
.
10.
Agrawal
,
A.
,
Reddy
,
N. V.
, and
Dixit
,
P. M.
, 2008, “
Optimal Blank Shape Prediction Considering Sheet Thickness Variation: An Upper Bound Approach
,”
J. Mater. Process. Technol.
0924-0136,
196
(
1–3
), pp.
249
258
.
11.
Wang
,
J.
,
Goel
,
A.
,
Yang
,
F.
, and
Gau
,
J. -T.
, 2009, “
Blank Optimization for Sheet Metal Forming Using Multi-Step Finite Element Simulations
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
40
, pp.
709
720
.
12.
Stelson
,
A.
, 1983, “
Real Time Identification of Work Piece Material Characteristics From Measurements During Brake Forming
,”
ASME J. Eng. Ind.
0022-0817,
105
, pp.
45
53
.
13.
Chandra
,
A.
, 1987, “
Real-Time Identification and Control of Spring Back in Sheet Metal Forming
,”
ASME J. Eng. Ind.
0022-0817,
109
, pp.
265
273
.
14.
Manabe
,
K.
,
Soeda
,
K.
,
Nagashima
,
T.
, and
Nishimura
,
H.
, 1992, “
Adaptive Control Method of Deep Drawing Using the Variable Blank Holding Force Technique
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
33
, pp.
423
428
.
15.
Manabe
,
K.
,
Yoshihara
,
S.
,
Yang
,
M.
, and
Nishimura
,
H.
, 1995, “
Fuzzy Controlled Variable Blank Holding Force Technique for Circular Cup Deep Drawing of Aluminum Alloy Sheet
,”
Proceedings of NAMRC
, Paper No. MF95-121, pp.
41
46
.
16.
Carpenter
,
W. C.
, and
Hoffman
,
M. E.
, 1997, “
Selecting the Architecture of a Class of Back Propagation Neural Networks Used as Approximations
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
11
, pp.
33
44
.
17.
Si
,
J.
,
Zhou
,
G.
, and
Li
,
H.
, 1997, “
Theory and Application of the Supervised Learning Method Based on Gradient Algorithms, Part II-Training Mechanism
,”
Journal of Tsinghua University
,
37
(
7
), pp.
71
73
.
18.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
, 1994, “
Training Feed Forward Networks With the Levenberg-Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
6
), pp.
989
993
.
19.
Sourirajan
,
K.
,
Ozsen
,
L.
, and
Uzsoy
,
R.
, 2009, “
A Genetic Algorithm for a Single Product Network Design Model With Lead Time and Safety Stock Considerations
,”
Eur. J. Oper. Res.
0377-2217,
197
, pp.
599
608
.
20.
Kobayashi
,
S.
, and
Altan
,
T.
, 1989,
Metal Forming and the Finite Element Method
,
Oxford University Press
,
New York
.
21.
Haddadzade
,
M.
,
Razfar
,
M. R.
, and
Mamaghani
M. R. M.
, 2009, “
Novel Approach to Initial Blank Design in Deep Drawing Using Artificial Neural Network
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
223
(
10
), pp.
1323
1330
.
You do not currently have access to this content.