Laser shock induced plastic deformation has been used widely, such as laser shock peening (LSP), laser dynamic forming (LDF), and laser peen forming. These processes have been extensively studied both numerically and experimentally at room temperature. Recently, it is found that at elevated temperature, laser shock induced plastic deformation can generate better formability in LDF and enhanced mechanical properties in LSP. For example, warm laser shock peening leads to improved residual stress stability and better fatigue performance in aluminum alloys. There is a need to investigate the effects of elevated temperature on deformation behavior of metallic materials during shock induced high strain rate deformation. In this study, LSP of copper are selected to systematically study the effects of elevated temperature in shock induced high strain rate deformation. Finite element modeling (FEM) is used to predict the deformation behavior. The FEM simulation results of surface profile and residual stress distribution after LSP are validated by experimental results. The validated FEM simulation is used to study the effects of temperature on the plastic deformation behaviors during LSP, such as plastic affected zone, stress/strain distribution, and energy absorption.

1.
Peyre
,
P.
, 1998, “
Current Trends in Laser Shock Processing
,”
Surf. Eng.
0267-0844,
14
(
5
), pp.
377
380
.
2.
Gao
,
H.
, and
Cheng
,
G. J.
, 2010, “
Laser-Induced High-Strain-Rate Superplastic 3-D Microforming of Metallic Thin Films
,”
J. Microelectromech. Syst.
1057-7157,
19
(
2
), pp.
273
281
.
3.
Cheng
,
G. J.
,
Pirzada
,
D.
, and
Zhou
,
M.
, 2007, “
Microstructure and Mechanical Property Characterizations on Microscale Laser Dynamic Forming of Metal Foil
,”
J. Appl. Phys.
0021-8979,
101
(
6
), p.
063108
.
4.
Wang
,
Y.
,
Fan
,
Y.
,
Kysar
,
J. W.
,
Vukelic
,
S.
, and
Yao
,
Y. L.
, 2008, “
Microscale Laser Peen Forming of Single Crystal
,”
J. Appl. Phys.
0021-8979,
103
(
6
), p.
063525
.
5.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y. -W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
(
10
), pp.
1021
1036
.
6.
Berthe
,
L.
,
Fabbro
,
R.
,
Peyre
,
P.
, and
Bartnicki
,
E.
, 1998, “
Experimental Study of the Transmission of Breakdown Plasma Generated During Laser Shock Processing
,”
Eur. Phys. J. Appl. Phys.
,
3
(
2
), pp.
215
218
.
7.
Zhang
,
W.
, 2002, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
369
378
.
8.
Ye
,
C.
,
Liao
,
Y.
, and
Cheng
,
G. J.
, 2010, “
Warm Laser Shock Peening Driven Nanostructures and Their Effects on Fatigue Performance in Aluminum Alloy 6160
,”
Adv. Eng. Mater.
1438-1656,
12
(
4
), pp.
291
297
.
9.
Ye
,
C.
,
Suslov
,
S.
,
Kim
,
B. J.
,
Stach
,
E. A.
, and
Cheng
,
G. J.
, 2010, “
Fatigue Performance Improvement in AISI 4140 Steel by Dynamic Strain Aging and Dynamic Precipitation During Warm Laser Shock Peening
,”
Acta Mater.
1359-6454, in press.
10.
Banerjee
,
B.
, 2005, “
An Evaluation of Plastic Flow Stress Models for the Simulation of High-Temperature and High-Strain-Rate Deformation of Metals
;” see http://arxiv.org/abs/cond-mat/0512466v1http://arxiv.org/abs/cond-mat/0512466v1.
11.
Ding
,
K.
, and
Ye
,
L.
, and
Institute of Materials Minerals and Mining.
, 2006,
Laser Shock Peening: Performance and Process Simulation
,
CRC
,
Boca Raton, FL
.
12.
Peyre
,
P.
, 1996, “
Laser Shock Processing of Aluminium Alloys. Application to High Cycle Fatigue Behaviour
,”
Mater. Sci. Eng., A
0921-5093,
210
(
1–2
), pp.
102
113
.
13.
Peyre
,
P.
,
Berthe
,
L.
,
Scherpereel
,
X.
, and
Fabbro
,
R.
, 1998, “
Laser-Shock Processing of Aluminium-Coated 55C1 Steel in Water-Confinement Regime, Characterization and Application to High-Cycle Fatigue Behaviour
,”
J. Mater. Sci.
0022-2461,
33
(
6
), pp.
1421
1429
.
14.
Peyre
,
P.
, 2007, “
FEM Calculation of Residual Stresses Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
15
(
3
), pp.
205
221
.
15.
Warren
,
A. W.
, 2008, “
Massive Parallel Laser Shock Peening: Simulation, Analysis, and Validation
,”
Int. J. Fatigue
0142-1123,
30
(
1
), pp.
188
197
.
16.
Fabbro
,
R.
,
Fournier
,
J.
,
Ballard
,
P.
,
Devaux
,
D.
, and
Virmont
,
J.
, 1990, “
Physical Study of Laser Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
(
2
), pp.
775
784
.
17.
Fox
,
J. A.
, 1974, “
Effect of Water and Paint Coatings on Laser-Irradiated Targets
,”
Appl. Phys. Lett.
0003-6951,
24
(
10
), pp.
461
464
.
18.
Clauer
,
A. H.
,
Holbrook
,
J. H.
, and
Fairand
,
B. P.
, 1981, “
Effects of Laser Induced Shock Waves on Metals
,”
Shock Waves and High-Strain-Rate Phenomena in Metals
,
M. A.
Meyer
and
L. E.
Murr
, eds.,
Plenum
,
New York
, pp.
675
702
.
19.
Zhang
,
W.
, and
Yao
,
Y. L.
, 2001, “
Feasibility Study of Inducing Desirable Residual Stress Distribution in Laser Micromachining
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
29
, pp.
413
420
.
20.
Wu
,
B.
, and
Yung
,
C. S.
, 2005, “
A Self-Closed Thermal Model for Laser Shock Peening Under the Water Confinement Regime Configuration and Comparisons to Experiments
,”
J. Appl. Phys.
0021-8979,
97
(
11
), p.
113517
.
21.
Wu
,
B.
, 2006, “
Laser Pulse Transmission Through the Water Breakdown Plasma in Laser Shock Peening
,”
Appl. Phys. Lett.
0003-6951,
88
(
4
), pp.
041116
.
22.
Liu
,
Q.
, 2007, “
The Effect of Laser Power Density on the Fatigue Life of Laser-Shock-Peened 7050 Aluminium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
11
), pp.
1110
1124
.
23.
ABAQUS Inc.
, 2008, ABAQUS User’s Manual V 6.8.
24.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
, 1983, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 1: Ductile Metals
,”
ASME J. Eng. Mater. Technol.
0094-4289,
105
(
1
), pp.
42
47
.
25.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, Netherlands: The Hague, pp.
541
547
.
26.
Steinberg
,
D. J.
, 1980, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
0021-8979,
51
(
3
), pp.
1498
1504
.
28.
Peyre
,
P.
, 2003, “
FEM Simulation of Residual Stresses Induced by Laser Peening
,”
Eur. Phys. J. Appl. Phys.
,
23
, pp.
83
88
.
29.
Braisted
,
W.
, 1999, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
0142-1123,
21
(
7
), pp.
719
724
.
30.
Tanner
,
A. B.
, and
McDowell
,
D. L.
, 1999, “
Deformation, Temperature and Strain Rate Sequence Experiments on OFHC Cu
,”
Int. J. Plast.
0749-6419,
15
(
4
), pp.
375
399
.
31.
Underwood
,
E. E.
, 1970,
Quantitative Stereology
,
Addison-Wesley
,
Reading, MA
.
32.
Ballard
,
P.
, 1991, “
Residual Stresses Induced by Laser-Shocks
,”
J. Phys. IV
1155-4339,
1
(
3
), pp.
487
494
.
You do not currently have access to this content.