The microscale laser dynamic forming (LDF) process is a high strain rate microfabrication technique, which uses a pulse laser to generate high pressure by vaporizing and ionizing an ablative coating, and thus produces complex 3D microstructures in thin foils. One of the most important features of this technique is ultrahigh strain rate (typically 1067s1), which is theoretically favorable for increasing formability. However, due to the lack of measurement techniques in microscale and submicroscale, the formability of workpieces in LDF is hardly studied. In this article, experiments were carried out on aluminum foils to study the forming limits and fracture of thin films in LDF. The deformation depth was measured by an optical profilometer and the formed feature was observed using a focused ion beam and a scanning electron microscope. Meanwhile, a finite element model based on a modified Johnson–Cook constitutive model and a Johnson–Cook failure model was developed to simulate the mechanical and fracture behaviors of materials in LDF. Experimental results were used to verify the model. The verified model was used to predict the forming limit diagram of aluminum foil in LDF. The forming limit diagrams show a significant increase in formability compared with other metal forming processes.

1.
Cheng
,
G. J.
, and
Pirzada
,
D.
, 2007, “
Microstructure and Mechanical Property Characterizations of Metal Foil After Microscale Laser Dynamic Forming
,”
J. Appl. Phys.
0021-8979,
101
, p.
063108
.
2.
Zhou
,
M.
,
Zhang
,
Y.
, and
Cai
,
L.
, 2002, “
Laser Shock Forming on Coated Metal Sheets Characterized by Ultrahigh-Strain-Rate Plastic Deformation
,”
J. Appl. Phys.
0021-8979,
91
(
8
), pp.
5501
5503
.
3.
Thomas
,
J. D.
,
Seth
,
M.
,
Daehn
,
G. S.
,
Bradley
,
J. R.
, and
Triantafyllidis
,
N.
, 2007, “
Forming Limits for Electromagnetically Expanded Aluminum Alloy Tubes: Theory and Experiment
,”
Acta Mater.
1359-6454,
55
, pp.
2863
2873
.
4.
Triantafyllidis
,
N.
, and
Waldenmyer
,
J. R.
, 2004, “
Onset of Necking in Electro-Magnetically Formed Rings
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2127
2148
.
5.
Balanethiram
,
V. S.
, and
Daehn
,
G. S.
, 1992, “
Enhanced Formability of Interstitial Free Iron at High Strain Rates
,”
Scr. Metall. Mater.
0956-716X,
27
, pp.
1783
1788
.
6.
Hu
,
X.
, and
Daehn
,
G. S.
, 1996, “
Effect of Velocity on Flow Localization in Tension
,”
Acta Mater.
1359-6454,
44
(
3
), pp.
1021
1033
.
7.
Klopp
,
R. W.
,
Clifton
,
R. J.
, and
Shawki
,
T. G.
, 1985, “
Pressure-Shear Impact and the Dynamic Viscoplastic Response of Metals
,”
Mech. Mater.
0167-6636,
4
, pp.
375
385
.
8.
Tong
,
W.
, and
Ravichandran
,
G.
, 1995, “
Inertial Effects on Void Growth in Porous Viscoplastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
633
639
.
9.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the International Symposium on Ballistics
, pp.
541
547
.
10.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1985, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
0013-7944,
21
(
1
), pp.
31
48
.
11.
Fabbro
,
R.
,
Fournier
,
J.
, and
Ballard
,
P.
, 1990, “
Physical Study of Laser-Produced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
68
(
2
), pp.
775
779
.
12.
Akarca
,
S. S.
,
Song
,
X.
,
Altenhof
,
W. J.
, and
Alpas
,
A. T.
, 2008, “
Deformation Behavior of Aluminum During Machining: Modeling by Eulerian and Smoothed-Particle Hydrodynamics Methods
,”
Proc. Inst. Mech. Eng., Part L
1464-4207,
222
, pp.
209
221
.
13.
Khan
,
A. S.
, and
Huang
,
S.
, 1992, “
Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5–104 s−1
,”
Int. J. Plast.
0749-6419,
8
, pp.
397
424
.
14.
Freund
,
L. B.
, and
Hutchinson
,
J. W.
, 1985, “
High Strain-Rate Crack Growth in Rate-Dependent Plastic Solids
,”
J. Mech. Phys. Solids
0022-5096,
33
(
2
), pp.
169
191
.
15.
Kumar
,
A.
, and
Kumble
,
R. G.
, 1969,
Viscous Drag on Dislocations at High Strain Rates in Copper
,
J. Appl. Phys.
0021-8979,
40
(
9
), pp.
3475
3480
.
16.
Hancock
,
J. W.
, and
Mackenizie
,
A. C.
, 1976, “
On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-Axial Stress-States
,”
J. Mech. Phys. Solids
0022-5096,
24
, pp.
147
169
.
17.
Børvik
,
T.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
, 2003, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part II. Numerical Study
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
15
32
.
18.
Rice
,
J. R.
, and
Tracey
,
D. M.
, 1969, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
201
207
.
19.
Templeton
,
D. W.
,
Gorsich
,
T. J.
, and
Holmquist
,
T. J.
, 2007, “
Computational Study of a Functionally Graded Ceramic-Metallic Armor
,”
23rd International Symposium on Ballistics
, Tarragona, pp.
1155
1163
.
20.
Curran
,
D. R.
,
Seaman
,
L.
, and
Shockey
,
D. A.
, 1987, “
Dynamic Failure of Solids
,”
Phys. Rep.
0370-1573,
147
(
5–6
), pp.
253
388
.
21.
Lubarda
,
V. A.
,
Schneider
,
M. S.
,
Kalantar
,
D. H.
,
Remington
,
B. A.
, and
Meyers
,
M. A.
, 2004, “
Void Growth by Dislocation Emission
,”
Acta Mater.
1359-6454,
52
, pp.
1397
1408
.
22.
Ahn
,
D. C.
, and
Sofronis
,
P.
, 2007, “
Void Growth by Dislocation-Loop Emission
,”
J. Appl. Phys.
0021-8979,
101
, p.
063514
.
23.
Devaux
,
D.
,
Fabbro
,
R.
,
Tollier
,
L.
, and
Bartnicki
,
E.
, 1993, “
Generation of Shock Waves by Laser-Induced Plasma in Confined Geometry
,”
J. Appl. Phys.
0021-8979,
74
(
4
), pp.
2268
2273
.
24.
Eliezer
,
S.
,
Moshe
,
E.
, and
Eliezer
,
D.
, 2002, “
Laser-Induced Tension to Measure the Ultimate Strength of Metals Related to the Equation of State
,”
Laser Part. Beams
0263-0346,
20
, pp.
87
92
.
25.
Liu
,
Q.
,
Yang
,
C. H.
,
Ding
,
K.
,
Barter
,
S. A.
, and
Ye
,
L.
, 2007, “
The Effect of Laser Power Density on the Fatigue Life of Laser-Shock-Peened 7050 Aluminium Alloy
,”
Fatigue and Fracture of Engineering Materials and Structures
,
30
, pp.
1110
1124
.
26.
Von Karman
,
T.
, and
Duwez
,
P.
, 1950, “
The Propagation of Plastic Deformation in Solids
,”
J. Appl. Phys.
0021-8979,
21
, pp.
987
994
.
27.
Hecker
,
S. S.
, 1973, “
Formability of HSLA Steel Sheets
,”
Met. Eng. Q.
0026-0967,
13
, pp.
42
49
.
28.
Dieter
,
G. E.
, 1984,
Workability Testing Techniques
,
American Society for Metals
,
Metals Park, OH
.
29.
Hecker
,
S. S.
, 1975, “
Formability of Aluminum Alloy Sheets
,”
ASME J. Eng. Mater. Technol.
0094-4289,
97
, pp.
66
73
.
You do not currently have access to this content.