Metal matrix composites, due to their excellent properties of high specific strength, fracture resistance, and corrosion resistance, are highly sought after over their nonferrous alloys, but these materials also present difficulty in machining. Excessive tool wear and high tooling costs of diamond tools make the cost associated with machining of these composites very high. This paper is concerned with the machining of high volume fraction long-fiber metal matrix composites (MMCs), which has seldom been studied. The composite material considered for this study is an Al–2% Cu aluminum matrix composite reinforced with 62% by volume fraction alumina fibers (Al2%Cu/Al2O3). Laser-assisted machining (LAM) is utilized to improve the tool life and the material removal rate while minimizing the subsurface damage. The effectiveness of the laser-assisted machining process is studied by measuring the cutting forces, specific cutting energy, surface roughness, subsurface damage, and tool wear under various material removal temperatures. A multiphase finite element model is developed in ABAQUS/STANDARD to assist in the selection of cutting parameters such as tool rake angle, cutting speed, and material removal temperature. The multiphase model is also successful in predicting the damage depth on machining. The optimum material removal temperature is established as 300°C at a cutting speed of 30 m/min. LAM provides a 65% reduction in the surface roughness, specific cutting energy, tool wear rate, and minimum subsurface damage over conventional machining using the same cutting conditions.

1.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
, 2006, “
Prediction of Cutting Forces in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1795
1803
.
2.
Kishawy
,
H. A.
,
Kannan
,
S.
, and
Balzainski
,
M.
, 2004, “
An Energy Based Analytical Force Model for Orthogonal Cutting of Metal Matrix Composites
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
91
94
.
3.
El-Gallab
,
M.
, and
Sklad
,
M.
, 1998, “
Machining of Al/SiC Particulate Metal Matrix Composites—Part I: Tool Performance
,”
J. Mater. Process. Technol.
0924-0136,
83
, pp.
277
285
.
4.
Lin
,
J. T.
,
Bhattacharyya
,
D.
, and
Ferguson
,
W. G.
, 1998, “
Chip Formation in the Machining of SiC Particle Reinforced Aluminum Matrix Composites
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
285
291
.
5.
Kannan
,
S.
,
Kishawy
,
H. A.
, and
Balazinski
,
M.
, 2006, “
Flank Wear Progression During Machining Metal Matrix Composites
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
787
791
.
6.
Ramesh
,
M. V.
,
Chan
,
K. C.
,
Lee
,
W. B.
, and
Cheung
,
C. F.
, 2001, “
Finite-Element Analysis of Diamond Turning of Aluminum Matrix Composites
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1449
1456
.
7.
Monaghan
,
J.
, and
Brazil
,
D.
, 1998, “
Modeling the Flow Processes of a Particle Reinforced Metal Matrix Composite During Machining
,”
Composites, Part A
1359-835X,
29
(
1–2
), pp.
87
99
.
8.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
, 2007, “
An FEM Investigation Into the Behavior of Metal Matrix Composites: Tool-Particle Interaction During Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
1497
1506
.
9.
Zhu
,
Y.
, and
Kishawy
,
H. A.
, 2005, “
Influence of Alumina Particles on the Mechanics of Machining Metal Matrix Composite During Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
389
398
.
10.
Varadarajan
,
Y. S.
,
Vijayaraghavan
,
L.
, and
Krishnamurthy
,
R.
, 2002, “
The Machinability Characteristics of Aluminosilicate Fiber Reinforced Al Alloy Composite
,”
Mater. Manuf. Processes
1042-6914,
17
(
6
), pp.
811
824
.
11.
Lei
,
S.
,
Shin
,
Y.
, and
Incropera
,
F.
, 2001, “
Experimental Investigation of Thermo-Mechanical Characteristics in Laser-Assisted Machining of Silicon Nitride Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
639
646
.
12.
Rebro
,
P.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
, 2002, “
Laser-Assisted Machining of Reaction Sintered Mullite Ceramics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
, pp.
875
885
.
13.
Pfefferkorn
,
F. E.
,
Shin
,
Y. C.
,
Tian
,
Y.
, and
Incropera
,
F. P.
, 2004, “
Laser-Assisted Machining of Magnesia-Partially Stabilized Zirconia
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
42
51
.
14.
Klocke
,
F.
, and
Bergs
,
T.
, 1997, “
Laser-Assisted Turning of Advanced Ceramics
,”
Proc. SPIE
0277-786X,
3102
, pp.
120
130
.
15.
Anderson
,
M.
,
Patwa
,
P.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of Inconel 718 With an Economic Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
14
), pp.
1879
1891
.
16.
Anderson
,
M. C.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of an Austenitic Stainless Steel: P550
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
(
B12
), pp.
2055
2067
.
17.
Skvarenina
,
S.
, and
Shin
,
Y. C.
, 2006, “
Laser-Assisted Machining of Compacted Graphite Iron
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
7
17
.
18.
Wang
,
Y.
,
Yang
,
L. J.
, and
Wang
,
N. J.
, 2002, “
An Investigation of Laser-Assisted Machining of Al2O3 Particle Reinforced Aluminum Matrix Composite
,”
J. Mater. Process. Technol.
0924-0136,
129
, pp.
268
272
.
19.
Wang
,
Y.
, and
Yang
,
L. J.
, 2001, “
Laser Heat Assisted Machining Characteristics of Al2O3 Particle-Reinforced Al-Matrix Composite
,”
Advances in Manufacturing Technology XVI, Proceedings of the 18th National Conference on Manufacturing Research
, Leeds, UK, pp.
435
440
.
20.
Barnes
,
S.
,
Pashby
,
I. R.
, and
Mok
,
D. K.
, 1996, “
The Effect of Workpiece Temperature on the Machinability of an Aluminum/SiC MMC
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
422
427
.
21.
Rozzi
,
J.
,
Pfefferkorn
,
F.
,
Shin
,
Y.
, and
Incropera
,
F.
, 2000, “
Transient Three Dimensional Heat Transfer Model for the Laser-Assisted Machining of Silicon Nitride: I. Comparison of Predictions With Measured Surface Temperature Histories
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1409
1424
.
22.
Rozzi
,
J.
,
Pfefferkorn
,
F.
,
Shin
,
Y.
, and
Incropera
,
F.
, 1998, “
Transient Thermal Response of a Rotating Cylindrical Silicon Nitride Workpiece Subjected to a Translating Laser Heat Source, Part I: Comparison of Surface Temperature Measurements With Theoretical Results
,”
ASME J. Heat Transfer
0022-1481,
120
(
4
), pp.
899
906
.
23.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, The Netherlands, pp.
541
547
.
24.
ASM International
, 2005, ASM Alloy Center, Material Property Online Database.
25.
Taylor
,
R. E.
,
Groot
,
H.
,
Goerz
,
T.
,
Ferrier
,
J.
, and
Taylor
,
D. L.
, 1998, “
Thermophysical Properties of Molten Aluminum Alloys
,”
High Temp. - High Press.
0018-1544,
30
, pp.
269
275
.
26.
Wierzbicki
,
T.
,
Bao
,
Y.
,
Lee
,
Y. -W.
, and
Bai
,
Y.
, 2005, “
Calibration and Evaluation of Seven Fracture Models
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
719
743
.
27.
Subbiah
,
S.
, and
Melkote
,
S. N.
, 2007, “
Evidence of Ductile Tearing Ahead of the Cutting Tool and Modeling the Energy Consumed in Material Separation in Micro-Cutting
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
, pp.
321
331
.
28.
Hibbitt, Karlesson, & Sorenson, Inc.
, 2004, ABAQUS User’s Manual, Version 6.5, Pawtucket, RI.
29.
3M
, 2004, Nextel Ceramic Textiles Technical Notebook, St. Paul, MN.
30.
Cantonwine
,
P. E.
, 2003, “
Strength of Thermally Exposed Alumina Fibers Part I Single Filament Behavior
,”
J. Mater. Sci.
0022-2461,
38
, pp.
461
470
.
31.
Hayashi
,
K.
,
Fujino
,
Y.
, and
Nishikawa
,
T.
, 1983, “
Thermal Conductivity of Alumina and Zirconia Fibrous Insulators at High Temperatures
,”
Yogyo Kyokaishi
0009-0255,
91
(
10
), pp.
449
456
.
32.
Pradère
,
C.
,
Goyheneche
,
J. M.
,
Batsale
,
J. C.
,
Dilhaire
,
S.
, and
Pailler
,
R.
, 2005, “
Specific-Heat Measurement of Single Metallic, Carbon, and Ceramic Fibers at Very High Temperatures
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
064901
.
33.
Tian
,
Y.
, and
Shin
,
Y. C.
, 2007, “
Multiscale Finite Element Modeling of Silicon Nitride Ceramics Undergoing Laser-Assisted Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
2
), pp.
287
295
.
34.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
, 2008, “
Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
, p.
051016
.
35.
Tvergaard
,
V.
, 1990, “
Effect of Fiber Debonding in a Whisker-Reinforced Metal
,”
Mater. Sci. Eng., A
0921-5093,
125
, pp.
203
213
.
36.
Yamakov
,
V.
,
Saether
,
E.
,
Phillips
,
D. R.
, and
Glaessgen
,
E. H.
, 2006, “
Molecular-Dynamics Simulation-Based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
1899
1928
.
37.
Iesulauro
,
E.
,
Ingraffea
,
A. R.
,
Arwade
,
S.
, and
Wawrzynek
,
P. A.
, 2002, “
Simulation of Grain Boundary Decohesion and Crack Initiation in Aluminum Microstructure Models
,”
Fatigue and Fracture Mechanics
, 33rd ed.,
W. G.
Reuter
and
R. S.
Piascik
, eds.,
ASTM International
,
West Conshohocken, PA
.
38.
Zhang
,
W.
,
Gu
,
M.
,
Chen
,
J.
,
Wu
,
Z.
,
Zhang
,
F.
, and
Deve
,
H. E.
, 2003, “
Tensile and Fatigue Response of Alumina-Fiber Reinforced Aluminum Matrix Composite
,”
Mater. Sci. Eng., A
0921-5093,
341
, pp.
9
17
.
39.
Third Wave Systems Inc.
, 2008, ADVANTEDGE FEM 5.1 User’s Manual, Minneapolis, MN.
40.
Tian
,
Y.
, and
Shin
,
Y. C.
, 2006, “
Thermal Modeling for Laser-assisted Machining of Silicon Nitride Ceramics With Complex Features
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
425
434
.
41.
Shelton
,
J. A.
, and
Shin
,
Y. C.
, 2008, “
An Experimental Evaluation of Laser-Assisted Micromilling of Two Difficult to Machine Alloys
,”
ASME International Conference on Manufacturing Science and Engineering
, Evanston, IL, Oct. 8–10.
You do not currently have access to this content.