The objective of this paper is to understand through parametric studies the effect of microstructural parameters, viz., the carbon nanotube (CNT) orientation with respect to the cutting direction, CNT loading, and level of dispersion within the matrix on the machinability of aligned CNT composites. To this end, a microstructure-based finite element machining model is used to simulate microstructures containing 1.5% and 6% by weight of CNTs. Microstructures with both uniform and nonuniform dispersions of CNTs are simulated. For each of these cases, CNTs having orientations of 0 deg, 45 deg, 90 deg, and 135 deg to the cutting direction are studied. The machining simulations were conducted using a positive rake tool. Chip morphology, cutting forces, surface roughness, and surface/subsurface damages are the machinability measures used for comparison. The results of the parametric studies demonstrate that the CNT orientation, loading, and level of dispersion all play a critical role in dictating the machining response of aligned composites. The results further indicate that the surface morphology of the machined surface can be harnessed to produce the next generation of microfluidic devices. This application demonstrates the feasibility of designing the microstructure of CNT composites by taking into account both their engineering functionality and machinability.

1.
Hyuga
,
H.
,
Jones
,
M. I.
,
Hirao
,
K.
, and
Yamauchi
,
Y.
, 2005, “
Friction and Wear Properties of Si3N4/Carbon Fiber Composites With Aligned Microstructure
,”
J. Am. Ceram. Soc.
0002-7820,
88
(
5
), pp.
1239
1243
.
2.
Papathanasiou
,
T. D.
,
Ingber
,
M. S.
, and
Guell
,
D. C.
, 1995, “
Stiffness Enhancement in Aligned, Short-Fibre Composites: A Computational and Experimental Investigation
,”
Compos. Sci. Technol.
0266-3538,
54
(
1
), pp.
1
9
.
3.
Thostenson
,
E. T.
, and
Chou
,
T. W.
, 2002, “
Aligned Multi-Walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization
,”
J. Phys. D: Appl. Phys.
0022-3727,
35
, pp.
L77
L80
.
4.
Xie
,
X.
,
Mai
,
Y.
, and
Zhou
,
X.
, 2005, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng. R.
0927-796X,
49
, pp.
89
112
.
5.
Wang
,
D. H.
,
Ramulu
,
M.
, and
Arola
,
D.
, 1995, “
Orthogonal Cutting Mechanisms of Graphite Epoxy Composite. Part I: Unidirectional Laminate
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
(
12
), pp.
1623
1638
.
6.
Koplev
,
A.
, 1980, “
Cutting of CFRP With Single Edge Tools
,”
Proceedings of the Third International Conference on Composite Materials
, Paris, pp.
1597
1605
.
7.
Samuel
,
J.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
, 2006, “
Machinability of Polycarbonate Reinforced With Multiwalled Carbon Nanotubes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
465
473
.
8.
Samuel
,
J.
,
Dikshit
,
A.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Hsia
,
K. J.
, 2008, “
Effect of Carbon Nanotube (CNT) Loading on the Thermo-Mechanical Properties and the Machinability of CNT-Reinforced Polymer Composites
,”
ASME
Paper No. MSEC_ICMP2008-72028.
9.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2007, “
Effect of Carbon Nanotube Loading on the Machinability of Polycarbonate Nanocomposites
,”
Proceedings of the International and INCOMM-6 Conference, Future Trends in Composite Materials and Processing
, Dec. 12–14.
10.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part 1: Model Development and Validation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
0311141
.
11.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
Microstructure-Level Machining Simulation of Carbon Nanotube Reinforced Polymer Composites—Part 2: Model Interpretation and Application
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
0311151
.
12.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
(
5
), pp.
1331
1356
.
13.
Dikshit
,
A.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2008, “
A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
3
), p.
0311101
.
14.
Gearing
,
B. P.
, and
Anand
,
L.
, 2004, “
Notch-Sensitive Fracture of Polycarbonate
,”
Int. J. Solids Struct.
0020-7683,
41
(
3–4
), pp.
827
845
.
15.
Stuart
,
B. H.
, 1997, “
Scratch Friction Studies of Polycarbonate
,”
Polym. Test.
0142-9418,
16
(
5
), pp.
517
522
.
16.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-Chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
8
(
4
), pp.
341
348
.
17.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Shatz
,
G. C.
, and
Ruoff
,
R. S.
, 2002, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
0556-2805,
65
, p.
235430
.
18.
Meo
,
M.
, and
Rossi
,
M.
, 2006, “
Tensile Failure Prediction of Single Wall Carbon Nanotube
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
2589
2599
.
19.
Xiao
,
J. R.
,
Gamma
,
B. A.
, and
Gillespie
,
J. W.
, 2005, “
An Analytical Molecular Structural Mechanics Model for the Mechanical Properties of Carbon Nanotubes
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
366
371
.
20.
Lu
,
J.
, and
Zhang
,
L.
, 2006, “
Analysis of Localized Failure of Single-Wall Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
35
, pp.
432
441
.
21.
Samuel
,
J.
, 2009, “
Fundamental Study on the Machinability of Carbon Nanotube Reinforced Polymer Composites
,” Ph.D. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
22.
Pötschke
,
P.
,
Bhattacharyya
,
A. R.
,
Janke
,
A.
, and
Goering
,
H.
, 2003, “
Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites
,”
Compos. Interfaces
0927-6440,
10
(
4–5
), pp.
389
404
.
23.
Lourie
,
O.
, and
Wagner
,
H. D.
, 1999, “
Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-Based Composites
,”
Compos. Sci. Technol.
0266-3538,
59
, pp.
975
977
.
24.
Toonder
,
J.
,
Bos
,
F.
,
Broer
,
D.
,
Filippini
,
L.
,
Gillies
,
M.
,
Goede
,
J.
,
Mol
,
T.
,
Reijme
,
M.
,
Talen
,
W.
,
Wilderbeek
,
H.
,
Khatavkar
,
V.
, and
Anderson
,
P.
, 2008, “
Artificial Cilia for Active Micro-Fluidic Mixing
,”
Lab Chip
1473-0197,
8
, pp.
533
541
.
25.
Zhou
,
Z.
, and
Liu
,
Z.
, 2008, “
Biomimetic Cilia Based on MEMS Technology
,”
J. Bionics Eng.
,
5
, pp.
358
365
.
26.
Kim
,
M. J.
, 2005, “
Bacterial Flows: Mixing and Pumping in Microfluidic Systems Using Flagellated Bacteria
,” Ph.D. thesis, Brown University, Providence, RI.
You do not currently have access to this content.