The surface-trajectory model gives a solution to some of the problems presented by the general geometric models where the design of an object is separated from its manufacture. In fact, in this model, the internal representation of objects is made up of machining trajectories. As the display systems usually need triangles to represent the objects, a process of triangulation is needed to visualize them. In other words, a secondary surface model is needed to display the objects. The following is a geometric model that, maintaining the philosophy of the surface-trajectory model, encapsulates the calculation of the machining process from the formal framework that provides the set theory and the mathematical morphology. The model addresses the process of designing objects by assimilation of a machining process by giving solutions to the design of complex objects and an arithmetic to support the generation of trajectories of manufacturing. The design process is similar to the craft work of sculptors designing their pieces by hand with their tools. It also gives a direct solution to the problems of the trajectory generation since they are already defined at the design phase. The model is generic and robust as there are no special cases or complex objects in which the model does not provide a correct solution. It also naturally incorporates the realistic display of the machined objects in a quickly and accurately way.

1.
Choi
,
B. K.
, 1991,
Surface Modeling for CAD/CAM
,
Elsevier Science
,
Amsterdam
.
2.
Iglesias
,
A.
,
Gálvez
,
A.
, and
Puig-Pey
,
J.
, 2001, “
Computational Methods for Geometric Processing. Applications to Industry
,”
Lect. Notes Comput. Sci.
0302-9743,
2073
, pp.
698
707
.
3.
Maekawa
,
T.
, 1999, “
An Overview of Offset Curves and Surfaces
,”
Comput.-Aided Des.
0010-4485,
31
(
3
), pp.
165
173
.
4.
Serra
,
J.
, 1982,
Image Analysis and Mathematical Morphology
,
Academic
,
London
.
5.
Jimeno
,
A. M.
,
Macía
,
F.
, and
García-Chamizo
,
J.
, 2004, “
Trajectory-Based Morphological Operators: A Morphological Model for Tool Path Computation
,”
Proceedings of the International Conference on Algorithmic Mathematics and Computer Science, AMCS 2004
, Las Vegas, NV.
6.
Molina-Carmona
,
R.
,
Jimeno
,
A.
, and
Rizo
,
R.
, 2007, “
Morphological Offset Computing for Contour Pocketing
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
2
), pp.
400
406
.
7.
Molina-Carmona
,
R.
,
Jimeno
,
A.
, and
Davia
,
M.
, 2008, “
Contour Pocketing Computation Using Mathematical Morphology
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
36
(
3–4
), pp.
334
342
.
8.
Molina-Carmona
,
R.
, 2002, “
Modelo Superficie—Trayectoria. Un modelo geométrico para el diseño y la fabricación de objetos tridimensionales
,” Ph.D. thesis, Universidad de Alicante, Alicante, Spain.
9.
Kim
,
S. -J.
, and
Yang
,
M. -Y.
, 2005, “
Triangular Mesh Offset for Generalized Cutter
,”
Comput.-Aided Des.
0010-4485,
37
(
10
), pp.
999
1014
.
10.
Meyer
,
F.
, 2001, “
An Overview of Morphological Segmentation
,”
Int. J. Pattern Recognit. Artif. Intell.
0218-0014,
15
(
7
), pp.
1089
1118
.
11.
Pujol
,
F. A.
,
García Chamizo
,
J. M.
,
Fuster
,
A.
,
Pujol
,
M.
, and
Rizo
,
R.
, 2002, “
Use of Mathematical Morphology in Real-Time Path Planning
,”
The International Journal of Systems & Cybernetics
,
31
(
1
), pp.
115
123
.
12.
Vincent
,
L.
, 1993, “
Morphological Algorithms
,”
E. R.
Dougherty
, ed.,
Mathematical Morphology in Image Processing
,
Marcel Dekker
,
New York
.
13.
Jimeno
,
A. M.
, 2003, “
Modelado topológico del proceso de fabricación. Aplicación al compensado de herramienta
,” Ph.D. thesis, Universidad de Alicante, Alicante, Spain.
14.
Jimeno
,
A.
,
García
,
J.
, and
Salas
,
F.
, 2001, “
Shoe Lasts Machining Using Virtual Digitizing
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
17
(
10
), pp.
744
750
.
You do not currently have access to this content.