Tool condition monitoring (TCM) is an important aspect of condition based maintenance (CBM) in all manufacturing processes. Recent work on TCM has generated significant successes for a variety of cutting operations. In particular, lower cost and on-board sensors in conjunction with enhanced signal processing capabilities and improved networking has permitted significant enhancements to TCM capabilities. This paper presents an overview of TCM for drilling, turning, milling, and grinding. The focus of this paper is on the hardware and algorithms that have demonstrated success in TCM for these processes. While a variety of initial successes are reported, significantly more research is possible to extend the capabilities of TCM for the reported cutting processes as well as for many other manufacturing processes. Furthermore, no single unifying approach has been identified for TCM. Such an approach will enable the rapid expansion of TCM into other processes and a tighter integration of TCM into CBM for a wide variety of manufacturing processes and production systems.

1.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
, 2006, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
7
), pp.
1483
1510
.
2.
Thurston
,
M.
, and
Lebold
,
M.
, 2001, “
Standards Development for Condition-Based Maintenance Systems
,”
Fifty-Fifth Meeting of the Society for Machinery Failure Prevention Technology
.
3.
Yang
,
Z.
, 2005, “
Dynamic Maintenance Scheduling Using Online Information About System Condition
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
4.
Yang
,
Z.
,
Djurdjanovic
,
D.
, and
Jun
,
N.
, 2007, “
Maintenance Scheduling for a Manufacturing System of Machines With Adjustable Throughput
,”
IIE Trans.
0740-817X,
39
(
12
), pp.
1111
1125
.
5.
Boutros
,
T.
, and
Liang
,
M.
, 2007, “
Mechanical Fault Detection Using Fuzzy Index Fusion
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
11
), pp.
1702
1714
.
6.
Byrne
,
G.
,
Dornfeld
,
D.
,
Inasaki
,
I.
,
Ketteler
,
G.
,
König
,
W.
, and
Teti
,
R.
, 1995, “
Tool Condition Monitoring (TCM)—The Status of Research and Industrial Application
,”
CIRP Ann.
0007-8506,
44
(
2
), pp.
541
567
.
7.
Rehorn
,
A. G.
,
Jiang
,
J.
, and
Orban
,
P. E.
, 2005, “
State-of-the-Art Methods and Results in Tool Condition Monitoring: A Review
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
(
7–8
), pp.
693
710
.
8.
Sick
,
B.
, 2002, “
On-Line and Indirect Tool Wear Monitoring in turning With Artificial Neural Networks: A Review of More Than a Decade of Research
,”
Mech. Syst. Signal Process.
0888-3270,
16
, pp.
487
546
.
9.
Scheffer
,
C.
, and
Heyns
,
P. S.
, 2001, “
Wear Monitoring in Turning Operations Using Vibration and Strain Measurements
,”
Mech. Syst. Signal Process.
0888-3270,
15
, pp.
1185
1202
.
10.
Ghasempoor
,
A.
,
Moore
,
T. N.
, and
Jeswiet
,
J.
, 2000, “
Tool Wear Prediction in Turning
,”
Proceedings of the 13th International Congress on Condition Monitoring and Diagnostic Engineering Management
, p.
8
.
11.
Sun
,
J.
,
Hong
,
G. S.
,
Wong
,
Y. S.
,
Rahman
,
M.
, and
Wang
,
Z. G.
, 2006, “
Effective Training Data Selection In Tool Condition Monitoring System
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
2
), pp.
218
224
.
12.
Sun
,
J.
,
Rahman
,
M.
,
Wong
,
Y. S.
, and
Hong
,
G. S.
, 2004, “
Multiclassification of Tool Wear With Support Vector Machine by Manufacturing Loss Consideration
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
11
), pp.
1179
1187
.
13.
Farrelly
,
F. A.
,
Petri
,
A.
,
Pitolli
,
L.
,
Pontuate
,
G.
,
Tagliani
,
A.
, and
Novi Inverardi
,
P. L.
, 2004, “
Statistical Properties of Acoustic Emission Signals From Metal Cutting Processes
,”
J. Acoust. Soc. Am.
0001-4966,
116
(
2
), pp.
981
986
.
14.
Li
,
X.
, and
Du
,
R.
, 2004, “
Monitoring Machining Processes Based on Discrete Wavelet Transform and Statistical Process Control
,”
Int. J. Wavelets, Multiresolut. Inf. Process.
0219-6913,
2
(
3
), pp.
299
311
.
15.
Li
,
X.
, and
Yao
,
X.
, 2005, “
Multi-Scale Statistical Process Monitoring in Machining
,”
IEEE Trans. Ind. Electron.
0278-0046,
52
(
3
), pp.
924
927
.
16.
Chen
,
X.
, and
Li
,
B.
, 2007, “
Acoustic Emission Method for Tool Condition Monitoring Based on Wavelet Analysis
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
, pp.
968
976
.
17.
Gao
,
H.
, and
Xu
,
M.
, 2005, “
Intelligent Tool Condition Monitoring System for Turning Operations
,”
Lect. Notes Comput. Sci.
0302-9743,
3498
, pp.
883
889
.
18.
Jemielniak
,
K.
, and
Bombiński
,
S.
, 2006, “
Hierarchical Strategies in Tool Wear Monitoring
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
(
3
), pp.
375
381
.
19.
Salgado
,
D. R.
, and
Alonso
,
F. J.
, 2007, “
An Approach Based on Current and Sound Signals for In-Process Tool Wear Monitoring
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
14
), pp.
2140
2152
.
20.
Min
,
B. K.
,
O'Neal
,
G.
,
Koren
,
Y.
, and
Pasek
,
Z.
, 2002, “
Cutting Process Diagnostics Utilising a Smart Cutting Tool
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
2–3
), pp.
475
486
.
21.
Achiche
,
S.
,
Balazinski
,
M.
,
Baron
,
L.
, and
Jemielniak
,
K.
, 2002, “
Tool Wear Monitoring Using Genetically-Generated Fuzzy Knowledge Bases
,”
Eng. Applic. Artif. Intell.
0952-1976,
15
(
3–4
), pp.
303
314
.
22.
Wang
,
L.
,
Mostafa
,
G. M.
, and
Kannatey-Asibu
,
E.
, Jr.
, 2002, “
Hidden Markov Model-Based Tool Wear Monitoring in Turning
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
3
), pp.
651
658
.
23.
Salgado
,
D. R.
, and
Alonso
,
F. J.
, 2006, “
Tool Wear Detection in Turning Operations Using Singular Spectrum Analysis
,”
J. Mater. Process. Technol.
0924-0136,
171
(
3
), pp.
451
458
.
24.
Lu
,
M. -C.
, and
Kannatey-Asibu
,
E.
, Jr.
, 2002, “
Analysis of Sound Signal Generation Due to Flank Wear in Turning
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
4
), pp.
799
808
.
25.
Scheffer
,
C.
, and
Heyns
,
P. S.
, 2004, “
An Industrial Tool Wear Monitoring System for Interrupted Turning
,”
Mech. Syst. Signal Process.
0888-3270,
18
(
5
), pp.
1219
1242
.
26.
Liu
,
J.
,
Djurdjanovic
,
D.
,
Ni
,
J.
,
Casoetto
,
N.
, and
Lee
,
J.
, 2007, “
Similarity Based Method for Manufacturing Process Performance Prediction and Diagnosis
,”
Comput. Ind.
,
58
(
6
), pp.
558
566
.
27.
Cohen
,
L.
, 2000,
Time-Frequency and Time-Scale Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Jeong
,
J.
, and
Williams
,
W. J.
, 1992, “
Kernel Design for Reduced Interference Distributions
,”
IEEE Trans. Signal Process.
1053-587X,
40
(
2
), pp.
402
412
.
29.
Djurdjanovic
,
D.
,
Lee
,
J.
, and
Ni
,
J.
, 2003, “
Watchdog Agent—An Infotronics-Based Prognostics Approach for Product Performance Degradation Assessment and Prediction
,”
Adv. Eng. Inf.
1474-0346,
17
(
3–4
), pp.
109
125
.
30.
Cakir
,
M. C.
, and
Isik
,
Y.
, 2005, “
Detecting Tool Breakage in Turning AISI 1050 Steel Using Coated and Uncoated Cutting Tools
,”
J. Mater. Process. Technol.
0924-0136,
159
(
2
), pp.
191
198
.
31.
Balazinski
,
M.
,
Czogata
,
E.
,
Jemielniak
,
K.
, and
Leski
,
J.
, 2002, “
Tool Condition Monitoring Using Artificial Intelligence Methods
,”
Eng. Applic. Artif. Intell.
0952-1976,
15
(
1
), pp.
73
80
.
32.
Jemielniak
,
K.
, 2006, “
Tool Wear Monitoring Based on a Non-Monotonic Signal Feature
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
(
2
), pp.
163
170
.
33.
Du
,
R.
, and
Yeung
,
K.
, 2006, “
Fuzzy Transition Probability: A New Method for Monitoring Progressive Faults. Part 2: Application Examples
,”
Eng. Applic. Artif. Intell.
0952-1976,
19
(
2
), pp.
145
155
.
34.
Srinivasa-Rao
,
C.
,
Nageswara-Rao
,
D.
, and
Someswara-Rao
,
R.
, 2006, “
Online Prediction of Diffusion Wear on the Flank Through Tool Tip Temperature in Turning Using Artificial Neural Networks
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
220
(
12
), pp.
2069
2076
.
35.
Oraby
,
S. E.
,
Al-Modhuf
,
A. F.
, and
Hayhurst
,
D. R.
, 2005, “
A Diagnostic Approach for Turning Tool Based on the Dynamic Force Signals
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
463
475
.
36.
Scheffer
,
C.
,
Engelbrecht
,
H.
, and
Heyns
,
P.
, 2005, “
A Comparative Evaluation of Neural Networks and Hidden Markov Models for Monitoring Turning Tool Wear
,”
Neural Comput. Appl.
0941-0643,
14
(
4
), pp.
325
336
.
37.
Du
,
R.
, and
Yeung
,
K.
, 2004, “
Fuzzy Transition Probability: A New Method for Monitoring Progressive Faults. Part 1: The Theory
,”
Eng. Applic. Artif. Intell.
0952-1976,
17
(
5
), pp.
457
467
.
38.
Yu
,
G.
,
Qui
,
H.
,
Djurdjanovic
,
D.
, and
Lee
,
J.
, 2006, “
Feature Signature Prediction of a Boring Process Using Neural Network Modeling With Confidence Bounds
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
30
(
7–8
), pp.
614
621
.
39.
Choi
,
Y. J.
,
Park
,
M. S.
, and
Chu
,
C. N.
, 2008, “
Prediction of Drill Failure Using Features Extraction in Time and Frequency Domains of Feed Motor Current
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
1
), pp.
29
39
.
40.
Subramanian
,
K.
, 1977, “
Sensing of Drill Wear and Prediction of Drill Life
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
295
301
.
41.
Jantunen
,
E.
, 2002, “
A Summary of Methods Applied to Tool Condition Monitoring in Drilling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
9
), pp.
997
1010
.
42.
Velayudham
,
A.
,
Krishnamurthy
,
R.
, and
Soundarapandian
,
T.
, 2005, “
Acoustic Emission Based Drill Condition Monitoring During Drilling of Glass/Phenolic Polymeric Composite Using Wavelet Packet Transform
,”
Mater. Sci. Eng., A
0921-5093,
412
(
1–2
), pp.
141
145
.
43.
Heinemann
,
R.
,
Hinduja
,
S.
, and
Barrow
,
G.
, 2007, “
Use of Process Signals for Tool Wear Progression Sensing in Drilling Small Deep Holes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
33
(
3–4
), pp.
243
250
.
44.
Panda
,
S. S.
,
Singh
,
A. K.
,
Chakraborty
,
D.
, and
Pal
,
S. K.
, 2006, “
Drill Wear Monitoring Using Back Propagation Neural Network
,”
J. Mater. Process. Technol.
0924-0136,
172
(
2
), pp.
283
290
.
45.
Fu
,
L.
,
Ling
,
S. -F.
, and
Tseng
,
C. -H.
, 2007, “
On-Line Breakage Monitoring of Small Drills With Input Impedance of Driving Motor
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
1
), pp.
457
465
.
46.
Ertunc
,
H. M.
, and
Oysu
,
C.
, 2004, “
Drill Wear Monitoring Using Cutting Force Signals
,”
Mechatronics
0957-4158,
14
(
5
), pp.
533
548
.
47.
Choi
,
Y. J.
, and
Chung
,
S. C.
, 2006, “
Monitoring of Micro-Drill Wear by Using the Machine Vision System
,”
Trans. NAMRI/SME
1047-3025,
34
, pp.
134
150
.
48.
Abu-Mahfouz
,
I.
, 2003, “
Drilling Wear Detection and Classification Using Vibration Signals and Artificial Neural Network
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
7
), pp.
707
720
.
49.
Al-Sulaiman
,
F. A.
,
Baseer
,
M. A.
, and
Sheikh
,
A. K.
, 2005, “
Use of Electrical Power for Online Monitoring of Tool Condition
,”
J. Mater. Process. Technol.
0924-0136,
166
(
3
), pp.
364
371
.
50.
Brophy
,
B.
,
Kelly
,
K.
, and
Byrne
,
G.
, 2002, “
AI-Based Condition Monitoring of the Drilling Process
,”
J. Mater. Process. Technol.
0924-0136,
124
(
3
), pp.
305
310
.
51.
Franco-Gasca
,
L. A.
,
Herrera-Ruiz
,
G.
,
Peniche-Vera
,
R.
,
Romero-Troncoso
,
R. D. J.
, and
Leal-Tafolla
,
W.
, 2006, “
Sensorless Tool Failure Monitoring System for Drilling Machines
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
3–4
), pp.
381
386
.
52.
Patra
,
K.
,
Pal
,
S. K.
, and
Bhattacharyya
,
K.
, 2007, “
Application of Wavelet Packet Analysis in Drill Wear Monitoring
,”
Mach. Sci. Technol.
1091-0344,
11
(
3
), pp.
413
432
.
53.
Ertunc
,
H. M.
,
Loparo
,
K. A.
, and
Ocak
,
H.
, 2001, “
Tool Wear Condition Monitoring in Drilling Operations Using Hidden Markov Models (HMMs)
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
, pp.
1363
1384
.
54.
Oh
,
Y. T.
,
Kwon
,
W. T.
, and
Chu
,
C. N.
, 2004, “
Drilling Torque Control Using Spindle Motor Current and its Effect on Tool Wear
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
24
, pp.
327
334
.
55.
Al-Sulaiman
,
F.
,
Sheikh
,
A.
, and
Baseer
,
M.
, 2004, “
Empirical Models of Mechanical and Electrical Drilling Power of Mild Steel
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
218
(
9
), pp.
1181
1189
.
56.
Newland
,
D. E.
, 1999, “
Ridge and Phase Identification in the Frequency Analysis of Transient Signals by Harmonic Wavelets
,”
ASME J. Vibr. Acoust.
0739-3717,
121
(
2
), pp.
149
155
.
57.
Romberg
,
T. M.
,
Cassar
,
A. G.
, and
Harris
,
R. W.
, 1984, “
A Comparison of Traditional Fourier and Maximum Entropy Spectral Methods for Vibration Analysis
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
106
(
1
), pp.
36
39
.
58.
Chandrasekharan
,
V.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 1995, “
A Mechanistic Approach to Predicting the Cutting Forces in Drilling: With Application to Fiber-Reinforced Composite Materials
,”
ASME J. Eng. Ind.
0022-0817,
117
(
4
), pp.
559
570
.
59.
René de Jesús
,
R. -T.
,
Herrera-Ruiz
,
G.
,
Terol-Villalobos
,
I.
, and
Jáuregui-Correa
,
J.
, 2003, “
Driver Current Analysis for Sensorless Tool Breakage Monitoring of CNC Milling Machines
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
15
), pp.
1529
1534
.
60.
Amer
,
W.
,
Grosvenor
,
R. I.
, and
Prickett
,
P. W.
, 2006, “
Sweeping Filters and Tooth Rotation Energy Estimation (TREE) Techniques for Machine Tool Condition Monitoring
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
9
), pp.
1045
1052
.
61.
Zhang
,
J.
, and
Chen
,
J.
, 2007, “
Tool Condition Monitoring in an End-Milling Operation Based on the Vibration Signal Collected Through a Microcontroller-Based Data Acquisition System
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
39
(
1–2
), pp.
445
448
.
62.
Kang
,
E. -G.
,
Park
,
S. -J.
, and
Lee
,
S. -J.
, 2005, “
Development of In Situ System to Monitor the Machining Process Using a Piezo Load Cell
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
25
(
7–8
), pp.
647
651
.
63.
Dini
,
G.
, and
Tognazzi
,
F.
, 2007, “
Tool Condition Monitoring in End Milling Using a Torque-Based Sensorized Toolholder
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
221
(
1
), pp.
11
23
.
64.
Roth
,
J.
, 2006, “
Using the Eigenvalues of Multivariate Spectral Matrices to Achieve Cutting Direction and Sensor Orientation Independence
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
350
354
.
65.
Suprock
,
C.
, and
Roth
,
J.
, 2007, “
Methods for On-Line Directionally Independent Failure Prediction of End Milling Cutting Tools
,”
Mach. Sci. Technol.
1091-0344,
11
, pp.
1
43
.
66.
Bhattacharyya
,
P.
,
Sengupta
,
D.
, and
Mukhopadhyay
,
S.
, 2007, “
Cutting Force-Based Real-Time Estimation of Tool Wear in Face Milling Using a Combination of Signal Processing Techniques
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
6
), pp.
2665
2683
.
67.
Xiaoli
,
L.
, 2001, “
Detection of Tool Flute Breakage In End Milling Using Feed-Motor Current Signatures
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
6
(
4
), pp.
491
498
.
68.
Dutta
,
R.
,
Paul
,
S.
, and
Chattopadhyay
,
A.
, 2006, “
The Efficacy of Back Propagation Neural Network With Delta Bar Delta Learning in Predicting the Wear of Carbide Inserts in Face Milling
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
31
(
5–6
), pp.
434
442
.
69.
Yao
,
Y.
,
Liu
,
C.
,
Yuan
,
Z.
, and
Lu
,
Y.
, 2006, “
Robustness Improvement of Tool Life Estimation Assisted by a Virtual Manufacturing Cell
,”
J. Mater. Process. Technol.
0924-0136,
172
(
3
), pp.
445
450
.
70.
Fish
,
R. K.
,
Ostendorf
,
M.
,
Bernard
,
G. D.
, and
Castanon
,
D. A.
, 2003, “
Multilevel Classification of Milling Tool Wear With Confidence Estimation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
25
(
1
), pp.
75
85
.
71.
Zhu
,
R.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2003, “
A Model-Based Monitoring and Fault Diagnosis Methodology for Free-Form Surface Machining Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
397
404
.
72.
Alaniz-Lumbreras
,
P. D.
,
Gómez-Loenzo
,
R. A.
,
de Jesús Romero-Troncoso
,
R.
,
del Rocío Peniche-Vera
,
R.
,
Jáuregui-Correa
,
J. C.
, and
Herrera-Ruiz
,
G.
, 2006, “
Sensorless Detection of Tool Breakage in Milling
,”
Mach. Sci. Technol.
1091-0344,
10
, pp.
263
274
.
73.
Peng
,
Y.
, 2006, “
Empirical Model Decomposition Based Time-Frequency Analysis for the Effective Detection of Tool Breakage
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
154
166
.
74.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
, 2007, “
Estimation of Tool Wear During CNC Milling Using Neural Network-Based Sensor Fusion
,”
Mech. Syst. Signal Process.
0888-3270,
21
(
1
), pp.
466
479
.
75.
Ritou
,
M.
,
Garnier
,
S.
,
Furet
,
B.
, and
Hascoet
,
J. -Y.
, 2006, “
A New Versatile In-Process Monitoring System for Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
15
), pp.
2026
2035
.
76.
Zuperl
,
U.
, and
Cus
,
F.
, 2004, “
Tool Cutting Force Modeling in Ball-End Milling Using Multilevel Perceptron
,”
J. Mater. Process. Technol.
0924-0136,
153–154
, pp.
268
275
.
77.
Tansel
,
I. N.
,
Bao
,
W. Y.
,
Reen
,
N. S.
, and
Kropas-Hughes
,
C. V.
, 2005, “
Genetic Tool Monitor (GTM) for Micro-End-Milling Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
3
), pp.
293
299
.
78.
Kuljanic
,
E.
, and
Sortino
,
M.
, 2005, “
TWEM, a Method Based on Cutting Forces—Monitoring Tool Wear In Face Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
1
), pp.
29
34
.
79.
Xu
,
M.
,
Schuyler
,
C. K.
,
Fussel
,
B. K.
, and
Jerard
,
R. B.
, 2006, “
Experimental Evaluation of a Smart Machining System for Feedrate Selection and Tool Condition Monitoring
,”
Trans. NAMRI/SME
1047-3025,
34
, pp.
151
158
.
80.
Shao
,
H.
,
Wang
,
H. L.
, and
Zhao
,
X. M.
, 2004, “
A Cutting Power Model for Tool Wear Monitoring in Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
14
), pp.
1503
1509
.
81.
Tönshoff
,
H. K.
,
Friemuth
,
T.
, and
Becker
,
J. C.
, 2002, “
Process Monitoring in Grinding
,”
CIRP Ann.
0007-8506,
51
(
2
), pp.
551
571
.
82.
Karpuschewski
,
B.
, and
Inasaki
,
I.
, 2006, “
Monitoring Systems for Grinding Processes
,”
Condition Monitoring and Control for Intelligent Manufacturing
,
Springer
,
London
, p.
83
.
83.
Inasaki
,
I.
, and
Karpuschewski
,
B.
, 2001, “
Abrasive Processes
,”
Chapter in Sensors in Manufacturing
,
Wiley
,
New York
, p.
236
.
84.
Dornfeld
,
D. A.
,
Lee
,
Y.
, and
Chang
,
A.
, 2003, “
Monitoring of Ultraprecision Machining Processes
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
21
(
8
), pp.
571
578
.
85.
Aguiar
,
P. R.
,
Serni
,
P. J. A.
,
Bianchi
,
E. C.
, and
Dotto
,
F. R. L.
, 2004, “
In-Process Grinding Monitoring by Acoustic Emission
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing
.
86.
Liao
,
T. W.
,
Hua
,
G.
,
Qu
,
J.
, and
Blau
,
P. J.
, 2006, “
Grinding Wheel Condition Monitoring With Markov Model-Based Clustering Methods
,”
Mach. Sci. Technol.
1091-0344,
10
, pp.
511
538
.
87.
Warren Liao
,
T.
,
Ting
,
C. -F.
,
Qu
,
J.
, and
Blau
,
P. J.
, 2007, “
A Wavelet-Based Methodology for Grinding Wheel Condition Monitoring
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
3–4
), pp.
580
592
.
88.
Liao
,
T. W.
,
Tang
,
F.
,
Qu
,
J.
, and
Blau
,
P. J.
, 2008, “
Grinding Wheel Condition Monitoring With Boosted Minimum Distance Classifiers
,”
Mech. Syst. Signal Process.
0888-3270,
22
(
1
), pp.
217
232
.
89.
Lee
,
D. E.
,
Hwang
,
I.
,
Valente
,
C. M. O.
,
Oliveira
,
J. F. G.
, and
Dornfeld
,
D. A.
, 2006, “
Precision Manufacturing Process Monitoring With Acoustic Emission
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
2
), pp.
176
188
.
90.
Oliveira
,
J. F. G.
, and
Valente
,
C. M. O.
, 2004, “
Fast Grinding Process Control With AE Modulated Power Signals
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
267
270
.
91.
Furutani
,
K.
,
Ohguro
,
N.
,
Hieu
,
N. T.
, and
Nakamura
,
T.
, 2002, “
In-Process Measurement of Topography Change of Grinding Wheel by Using Hydrodynamic Pressure
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
13
), pp.
1447
1459
.
92.
Meyer
,
L.
,
Heinzel
,
C.
, and
Brinksmeier
,
E.
, 2004, “
Monitoring of Grinding Processes Using a Sensor Equipped Grinding Wheel
,”
Annals of the WGP.
,
11
(
1
), pp.
41
44
.
93.
Brinksmeier
,
E.
,
Heinzel
,
C.
, and
Meyer
,
L.
, 2005, “
Development and Application of a Wheel Based Process Monitoring System in Grinding
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
301
304
.
94.
Hosokawa
,
A.
,
Mashimo
,
K.
,
Yamada
,
K.
, and
Ueda
,
T.
, 2004, “
Evaluation of Grinding Wheel Surface by Means of Grinding Sound Discrimination
,”
JSME Int. J.
0913-185X,
47
(
1
), pp.
51
57
.
95.
Guo
,
C.
,
Campomanes
,
M.
,
Mcintosh
,
C.
,
Becze
,
C.
, and
Malkin
,
S.
, 2004, “
Model-Based Monitoring and Control of Continuous Dress Creep-Feed Form Grinding
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
263
266
.
96.
Warkentin
,
A.
, and
Bauer
,
R.
, 2003, “
Analysis of Wheel Wear Using Force Data in Surface Grinding
,”
Transaction of the Canadian Society for Mechanical Engineering
,
27
(
3
), pp.
193
204
.
97.
Kwak
,
J. -S.
, and
Ha
,
M. -K.
, 2004, “
Detection of Dressing Time Using the Grinding Force Signal Based on the Discrete Wavelet Decomposition
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
23
(
1–2
), pp.
87
92
.
98.
Couey
,
J. A.
,
Marsh
,
E. R.
,
Knapp
,
B. R.
, and
Vallance
,
R. R.
, 2005, “
Monitoring Force in Precision Cylindrical Grinding
,”
Precis. Eng.
0141-6359,
29
(
3
), pp.
307
314
.
99.
Chiu
,
N.
, 1993, “
Computer Simulation for Form Grinding Process
,” Ph.D. dissertation, University of Massachusetts.
100.
Chiu
,
N.
, and
Malkin
,
S.
, 1994, “
Computer Simulation for Creep-Feed Form Grinding
,”
Trans. NAMRI/SME
1047-3025,
22
, pp.
119
126
.
101.
Malkin
,
S.
, 1989,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Wiley
,
New York
.
102.
Snoeys
,
R.
, and
Peters
,
J.
, 1974, “
The Significance of Chip Thickness in Grinding
,”
CIRP Ann.
0007-8506,
23
, pp.
227
237
.
103.
Nuttall
,
A. H.
, 1994, “
Detection Performance of Power-Law Processors for Random Signals of Unknown Location, Structure, Extent, and Strength
,” Naval Undersea Warfare Center Division, Naval Undersea Warfare Center Technical Report No. 10751.
104.
Freund
,
Y.
, and
Schapire
,
R. E.
, 1997, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
0022-0000,
55
(
1
), pp.
119
139
.
105.
Kim
,
Y.
, 2003, “
Averaged Boosting: A Noise-Robust Ensemble Method
,”
Advances in Knowledge Discovery and Data Mining
,
Springer
,
New York
, p.
565
.
You do not currently have access to this content.