Flexibility of assembly systems is crucial to maintaining the competitiveness in the rapidly changing market. In this paper, a novel flexible fixturing system for sheet metal part assembly is presented, which utilizes parallel robots as reconfigurable fixture elements. The method of influence coefficients, combined with finite element analysis and screw theory, is used to analyze the variations in sheet metal assembly. In the analysis of assembly variations, a total of six variations involved in prewelding, underwelding, and afterwelding process are intensively considered. Screw theory is employed to model the kinematic and constraint features corresponding to the fixturing schemes. A robust fixture layout design model is developed based on the Lagrangian conditional extremum method. A case study illustrates that the robust optimal methodology and an optimal fixture layout scheme with less sensitivity can be obtained.

1.
Gallien
,
D.
, and
Hammer
,
H.
, 1984, “
Efficient and Cost Effective Use of Modular Fixture Kits
,”
The Machine Site TZ fur Metallbeatbeitung
,
77
(
5
), pp.
3
8
. 0002-7820
2.
Rong
,
Y.
, and
Li
,
X. S.
, 1997, “
Locating Method Analysis Based Rapid Fixture Configuration Design
,”
ETFA ‘97, Sixth International Conference
, Sep. 9–12, pp.
27
32
.
3.
Asada
,
H.
, and
By
,
B.
, 1985, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
0882-4967,
RA-1
(
2
), pp.
86
94
.
4.
Hurtado
,
J. F.
, and
Melkote
,
S. N.
, 2002, “
A Model for Synthesis of the Fixturing Configuration in Pin-Array Type Flexible Machining Fixtures
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
837
849
.
5.
Sela
,
M. N.
,
Gaudryt
,
O.
,
Dombret
,
E.
, and
Benhabib
,
B.
, 1997, “
A Reconfigurable Modular Fixturing System for Thin-Walled Flexible Objects
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
, pp.
611
617
.
6.
Izquierdo
,
L. E.
,
Shi
,
J.
,
Hu
,
S. J.
, and
Wampler
,
C. W.
, 2007, “
Feedforward Control of Multistage Assembly Processes Using Programmable Tooling
,”
Trans. NAMRI/SME
1047-3025,
35
, pp.
295
302
.
7.
Kong
,
Z.
, and
Ceglarek
,
D.
, 2006, “
Fixture Workspace Synthesis for Reconfigurable Assembly Systems
,”
J. Manuf. Syst.
0278-6125,
25
(
1
), pp.
25
38
.
8.
Menassa
,
R. J.
, and
DeVries
,
W. R.
, 1991, “
Optimization Methods Applied to Selecting Support Positions in Fixture Design
,”
ASME Trans. J. Eng. Ind.
,
113
, pp.
412
418
.
9.
Rodrigo
,
A.
, and
Placid
,
M.
, 2001, “
Kinematic Analysis and Synthesis of Deterministic 3-2-1 Locator Schemes for Machining Fixtures
,”
Trans. ASME
0097-6822,
123
, pp.
708
719
.
10.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
, 1996, “
Deformable Sheet Metal Fixturing: Principles, Algorithms and Simulations
,”
Trans. ASME
0097-6822,
118
, pp.
318
324
.
11.
Rong
,
Q.
,
Ceglarek
,
D.
, and
Shi
,
J.
, 2000, “
Dimensional Fault Diagnosis for Compliant Beam Structure Assemblies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
(
4
), pp.
773
780
.
12.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1997, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
368
374
.
13.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2004, “
Impact of Fixture Design on Sheet Metal Assembly Variation
,”
J. Manuf. Syst.
0278-6125,
23
(
3
), pp.
182
193
.
14.
Ding
,
Y.
,
Shi
,
J.
, and
Ceglarek
,
D.
, 2002, “
Diagnosability Analysis of Multistage Manufacturing Processes
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
1
), pp.
1
13
.
15.
Ceglarek
,
D.
, and
Shi
,
J.
, 1996, “
“Fixture Failure Diagnosis for the Autobody Assembly Using Pattern Recognition
,”
ASME J. Eng. Ind.
0022-0817,
118
(
1
), pp.
55
66
.
16.
Ceglarek
,
D.
, 1998, “
Multivariate Analysis and Evaluation of Adaptive Sheet Metal Assembly Systems
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
17
22
.
17.
Ceglarek
,
D.
, and
Shi
,
J.
, 1998, “
Design Evaluation of Sheet Metal Joints for Dimensional Integrity
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
(
2
), pp.
452
460
.
18.
Cai
,
W.
, 2006, “
Robust Pin Layout Design for Sheet-Panel Locating
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
, pp.
486
494
.
19.
Cai
,
W.
, 2008, “
Fixture Optimization for Sheet Panel Assembly Considering Welding Gun Variations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
, pp.
235
246
.
20.
Liu
,
S. C.
, and
Hu
,
S. J.
, 1998, “
Sheet Metal Joint Configurations and Their Variation Characteristics
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
120
, pp.
461
467
.
21.
Jaime
,
A.
,
Hu
,
S. J.
, and
Samuel
,
P.
, 2004, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
J. Manuf. Syst.
0278-6125,
126
(
3
), pp.
355
360
.
22.
Siebenaler
,
S. P.
, and
Melkote
,
S. N.
, 2006, “
Prediction of Workpiece Deformation in a Fixture System Using the Finite Element Method
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
51
58
.
23.
Li
,
Z.
,
Izquierdo
,
L. E.
,
Kokkolaras
,
M.
,
Hu
,
S. J.
, and
Papalambros
,
P. Y.
, 2008, “
Multiobjective Optimization for Integrated Tolerance Allocation and Fixture Layout Design in Multistation Assembly
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
130
(
4
), p.
044501
.
24.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
, 2003, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
0161-8458,
125
(
4
), pp.
673
681
.
25.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
, 2003, “
Robust Fixture Configuration Design for Sheet Metal Assembly With Laser Welding
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
1
), pp.
120
127
.
26.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
, 2002, “
Weld Pattern Design for Sheet Metal Laser Welding Considering Fixturing Quality
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
(
6
), pp.
418
425
.
27.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
, 2002, “
Fixture Configuration Design for Sheet Metal Assembly With Laser Welding: A Case Study
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
19
(
7
), pp.
501
509
.
28.
Li
,
B.
,
Shiu
,
B. W.
, and
Lau
,
K. J.
, 2001, “
Principle and Simulation of Fixture Configuration Design for Sheet Metal Assembly With Laser Welding, Part I: Finite Element Modeling and a Prediction and Correction Method
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
18
(
4
), pp.
266
275
.
29.
Li
,
B.
, and
Shiu
,
B. W.
, 2001, “
Principle and Simulation of Fixture Configuration Design for Sheet Metal Assembly With Laser Welding, Part II: Optimal Configuration Design With Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
18
(
4
), pp.
276
284
.
30.
Li
,
B.
,
Xiaojun
,
Y.
,
Ying
,
H.
, and
Zhang
,
D.
, 2009, “
Quality Design of Tolerance Allocation for Sheet Metal Assembly With Resistance Spot Weld
,”
Int. J. Prod. Res.
0020-7543,
47
(
6
), pp.
1695
1711
.
31.
Li
,
B.
,
Hu
,
Y.
, and
Tang
,
H.
, 2007, “
A Comparative Study on Quality Design of Fixture Planning for Sheet Metal Assembly
,”
J. Eng. Design
0954-4828,
18
(
4
), pp.
303
315
.
32.
Li
,
B.
,
Tang
,
H.
,
Yang
,
X. P.
, and
Wang
,
H.
, 2007, “
Quality Design of Fixture Planning for Sheet Metal Assembly
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
32
(
7–8
), pp.
690
697
.
33.
Shiu
,
B. W.
,
Li
,
B.
,
Fu
,
X. Y.
, and
Liu
,
Y.
, 2002, “
Tolerance Allocation of Sheet Metal Assembly Using Finite Element Model
,”
JSME Int. J., Ser. C
1340-8062,
45
(
1
), pp.
258
266
.
34.
Yu
,
H.
,
Li
,
B.
,
Yang
,
X.
,
Hu
,
Y.
, and
Hu
,
H.
, 2008, “
Stiffness Analysis on a Parallel-Robot Based High-Precision Flexible Fixture
,”
Key Eng. Mater.
1013-9826,
364–366
, pp.
327
332
.
35.
Hongjian
,
Y.
,
Bing
.
L.
, and
Xiaojun
,
Y.
, 2006, “
Synthesis and Analysis of Parallel-Robot Based Flexible Fixture for Automobile Body Assembly
,”
Proceedings of the International Conference on Mechanical Transmissions
, Chongqing, China, pp.
803
808
.
36.
Zhong
,
W.
, and
Jack Hu
,
S.
, 2006, “
Modeling Machining Geometric Variation in a N-2-1 Fixturing Scheme
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
213
219
.
37.
Shi
,
J.
, 2006,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.