A major concern with medical and dental biomaterials is colonization of these materials with microbial biofilms. One material processed using chemical vapor deposition and other conventional top-down nanomanufacturing technologies that has recently been considered for use in preventing growth of microorganisms is the nanocrystalline diamond. Nanocrystalline diamond coatings have been evaluated for use as coatings on medical implants (e.g., hip prostheses) and surgical tools due to their low coefficient of friction, high corrosion resistance, high hardness, and high wear resistance. In this study, the microstructural properties and microorganism interaction behavior of nanocrystalline diamond coatings were examined. A device for examining microbial biofilms known as a CDC biofilm reactor was used to examine the interaction between a fluorescent microorganism, Pseudomonas fluorescens, and nanocrystalline diamond coatings in a continuous perfusion environment. Biofilm formation was evident on the nanocrystalline diamond surface after 24 h. No correlation between grain size or morphology and cell density was observed; large variations in P. fluorescens growth on the coatings were observed, even for the samples with similar grain sizes and morphologies. The results of this study suggest that nanocrystalline diamond coatings do not prevent Pseudomonas fluorescens biofilm development in a continuous perfusion environment. Additional treatment of the nanocrystalline diamond coatings with antimicrobial and/or antifouling agents would be necessary to prevent formation of microbial biofilms. The development of novel continuous flow technologies for evaluating the growth of microbial biofilms on biomaterials will provide a better understanding of biomaterial-microorganism interaction and will enable the creation of enhanced antimicrobial biomaterials.

1.
Watnick
,
P.
, and
Kolter
,
R.
, 2000, “
Biofilm, City of Microbes
,”
J. Bacteriol.
0021-9193,
182
, pp.
2675
2679
.
2.
Webb
,
J. S.
,
Givskov
,
M.
, and
Kjelleberg
,
S.
, 2003, “
Bacterial Biofilms: Prokaryotic Adventures in Multicellularity
,”
Curr. Opin. Microbiol.
1369-5274,
6
, pp.
578
585
.
3.
Musk
,
D. J.
, and
Hergenrother
,
P. J.
, 2006, “
Chemical Countermeasures for the Control of Bacterial Biofilms: Effective Compounds and Promising Targets
,”
Curr. Med. Chem.
0929-8673,
13
, pp.
2163
2177
.
4.
Lindsay
,
D.
, and
von Holy
,
A.
, 2006, “
Bacterial Biofilms Within the Clinical Setting: What Healthcare Professionals Should Know
,”
J. Hosp. Infect.
0195-6701,
64
, pp.
313
325
.
5.
Donlan
,
R. M.
, 2002, “
Biofilms: Microbial Life on Surfaces
,”
Emerg. Infect. Dis.
1080-6040,
8
, pp.
881
890
.
6.
Donlan
,
R. M.
, and
Costerton
,
J. W.
, 2002, “
Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms
,”
Clin. Microbiol. Rev.
0893-8512,
15
, pp.
167
193
.
7.
Stewart
,
P. S.
, and
Costerton
,
J. W.
, 2001, “
Antibiotic Resistance of Bacteria in Biofilms
,”
Lancet
0140-6736,
358
, pp.
135
138
.
8.
Baillie
,
G. S.
, and
Douglas
,
L. J.
, 1998, “
Effect of Growth Rate on Resistance of Candida Albicans Biofilms to Antifungal Agents
,”
Antimicrob. Agents Chemother.
0066-4804,
42
, pp.
1900
1905
.
9.
Davies
,
D. G.
,
Parsek
,
M. R.
,
Pearson
,
J. P.
,
Iglewski
,
B. H.
,
Costerton
,
J. W.
, and
Greenberg
,
E. P.
, 1998, “
The Involvement of Cell-to-Cell Signals in the Development of a Bacterial Biofilm
,”
Science
0036-8075,
280
, pp.
295
298
.
10.
Trafny
,
E. A.
, 1998, “
Susceptibility of Adherent Organisms From Pseudomonas aeruginosa and Staphylococcus aureus Strains Isolated From Burn Wounds to Antimicrobial Agents
,”
Int. J. Antimicrob. Agents
0924-8579,
10
, pp.
223
228
.
11.
Teughels
,
W.
,
van Assche
,
N.
,
Sliepen
,
I.
, and
Quirynen
,
M.
, 2006, “
Effect of Material Characteristics and/or Surface Topography on Biofilm Development
,”
Clin. Oral Implants Res.
0905-7161,
17
, pp.
68
81
.
12.
Walker
,
C.
, and
Sedlacek
,
M. J.
, 2007, “
An In Vitro Biofilm Model of Subgingival Plaque
,”
Oral Microbiol. Immunol.
0902-0055,
22
, pp.
152
161
.
13.
Davies
,
D.
, 2003, “
Understanding Biofilm Resistance to Antibacterial Agents
,”
Nat. Rev. Drug Discovery
1474-1776,
2
, pp.
114
122
.
14.
Sihorkar
,
V.
, and
Vyas
,
S. P.
, 2001, “
Biofilm Consortia on Biomedical and Biological Surfaces: Delivery and Targeting Strategies
,”
Pharm. Res.
0724-8741,
18
, pp.
1247
1254
.
15.
Amaral
,
M.
,
Gomes
,
P. S.
,
Lopes
,
M. A.
,
Santos
,
J. D.
,
Silva
,
R. F.
, and
Fernandes
,
M. H.
, 2008, “
Nanocrystalline Diamond as a Coating for Joint Implants: Cytotoxicity and Biocompatibility Assessment
,”
J. Nanomater.
,
2008
, p.
894352
.
16.
Amaral
,
M.
,
Abreu
,
C. S.
,
Oliveira
,
F. J.
,
Gomes
,
J. R.
, and
Silva
,
R. F.
, 2008, “
Tribological Characterization of NCD in Physiological Fluids
,”
Diamond Relat. Mater.
0925-9635,
17
, pp.
848
852
.
17.
Amaral
,
M.
,
Abreu
,
C. S.
,
Oliveira
,
F. J.
,
Gomes
,
J. R.
, and
Silva
,
R. F.
, 2007, “
Biotribological Performance of NCD Coated Si3N4-Bioglass Composites
,”
Diamond Relat. Mater.
0925-9635,
16
, pp.
790
795
.
18.
Grabarczyk
,
J.
,
Batory
,
D.
,
Louda
,
P.
,
Couvrat
,
P.
,
Kotela
,
I.
, and
Bakowicz Mitura
,
K.
, 2007, “
Carbon Coatings for Medical Implants
,”
Journal of Achievements in Materials and Manufacturing Engineering
,
20
, pp.
107
110
.
19.
Jakubowski
,
W.
,
Bartosz
,
G.
,
Niedzielski
,
P.
,
Szymanski
,
W.
, and
Walkowiak
,
B.
, 2004, “
Nanocrystalline Diamond Surface is Resistant to Bacterial Colonization
,”
Diamond Relat. Mater.
0925-9635,
13
(
10
), pp.
1761
1763
.
20.
Lewis
,
J. S.
, 2007, “
Microstructural, Mechanical and Antibacterial Characterization of Nanocrystalline Diamond Thin Films
,” MS thesis, North Carolina State University, Raleigh, NC.
21.
Ramamurti
,
R.
,
Shanov
,
V.
,
Singh
,
R. N.
,
Mamedov
,
S.
, and
Boolchand
,
P.
, 2006, “
Raman Spectroscopy Study of the Influence of Processing Conditions on the Structure of Polycrystalline Diamond Films
,”
J. Vac. Sci. Technol. A
0734-2101,
24
, pp.
179
189
.
22.
Narayan
,
R. J.
,
Wei
,
W.
,
Jin
,
C.
,
Andara
,
M.
,
Agarwal
,
A.
,
Gerhardt
,
R. A.
,
Shih
,
C. C.
,
Shih
,
C. M.
,
Lin
,
S. J.
,
Su
,
Y. Y.
,
Mamedov
,
S.
,
Boolchand
,
P.
,
Ramamurti
,
R.
, and
Singh
,
R. N.
, 2006, “
Microstructural and Biological Properties of Nanocrystalline Diamond Coatings
,”
Diamond Relat. Mater.
0925-9635,
15
, pp.
1935
1940
.
23.
Shanov
,
V.
,
Tabakoff
,
W.
, and
Singh
,
R. N.
, 2002, “
CVD Diamond Coating for Erosion Protection at Elevated Temperatures
,”
J. Mater. Eng. Perform.
1059-9495,
11
, pp.
220
225
.
24.
Brigmon
,
R. L.
,
Franck
,
M. M.
,
Bray
,
J. S.
,
Lanclos
,
S.
,
Scott
,
D.
, and
Fliermans
,
C. B.
, 1998, “
Direct Immunofluorescence and Enzyme-Linked Immunosorbent Assays for Evaluating Organic Contaminant Degrading Bacteria
,”
J. Microbiol. Methods
0167-7012,
32
, pp.
1
10
.
25.
Fletcher
,
M.
, 1988, “
Attachment of Pseudomonas fluorescens to Glass and Influence of Electrolytes on Bacterium-Substratum Separation Distance
,”
J. Bacteriol.
0021-9193,
170
, pp.
2027
2030
.
26.
Duddridge
,
J. E.
,
Cent
,
C. A.
, and
Laws
,
J. F.
, 1982, “
Effect of Surface Shear Stress on the Attachment of Pseudomonas fluorescens to Stainless Steel Under Defined Flow Conditions
,”
Biotechnol. Bioeng.
0006-3592,
24
, pp.
153
164
.
27.
Khabbaz
,
R. F.
,
Arnow
,
P. M.
,
Highsmith
,
A. K.
,
Herwaldt
,
L. A.
,
Chou
,
T.
,
Jarvis
,
W. R.
,
Lerche
,
N. W.
, and
Allen
,
J. R.
, 1984, “
Pseudomonas fluorescens Bacteremia From Blood Transfusion
,”
Am. J. Med.
0002-9343,
76
, pp.
62
68
.
28.
Hsueh
,
P. R.
,
Teng
,
L. J.
,
Pan
,
H. J.
,
Chen
,
Y. C.
,
Sun
,
C. C.
,
Ho
,
S. W.
, and
Luh
,
K. T.
, 1998, “
Outbreak of Pseudomonas fluorescens Bacteremia Among Oncology Patients
,”
J. Clin. Microbiol.
0095-1137,
36
, pp.
2914
2917
.
29.
Gershman
,
M. D.
,
Kennedy
,
D. J.
,
Noble-Wang
,
J.
,
Kim
,
C.
,
Gullion
,
J.
,
Kacica
,
M.
,
Jensen
,
B.
,
Pascoe
,
N.
,
Saiman
,
L.
,
McHale
,
J.
,
Wilkins
,
M.
,
Schoonmaker-Bopp
,
D.
,
Clayton
,
J.
,
Arduino
,
M.
,
Srinivasan
,
A.
, and
Pseudomonas fluorescens Investigation Team
, 2008, “
Multistate Outbreak of Pseudomonas fluorescens Bloodstream Infection After Exposure to Contaminated Heparinized Saline Flush Prepared by a Compounding Pharmacy
,”
Clin. Infect. Dis.
1058-4838,
47
, pp.
1372
1379
.
30.
Manfredi
,
R.
,
Nanetti
,
A.
,
Ferri
,
M.
, and
Chiodo
,
F.
, 2000, “
Psuedomonas Organisms Other than Pseudomonas Aeruginosa as Emerging Bacterial Pathogens in Patients With Human Immunodeficiency Virus Infection
,”
Infectious Diseases in Clinical Practice
1053-9103,
9
(
2
), pp.
79
87
.
31.
Goeres
,
D. M.
,
Loetterle
,
L. R.
,
Hamilton
,
M. A.
,
Murga
,
R.
,
Kirby
,
D. W.
, and
Donlan
,
R. M.
, 2005, “
Statistical Assessment of a Laboratory Method for Growing Biofilms
,”
Microbiology
1350-0872,
151
, pp.
757
762
.
32.
Banning
,
N.
,
Toze
,
S.
, and
Mee
,
B. J.
, 2003, “
Persistence of Biofilm-Associated Escherichia coli and Pseudomonas aeruginosa in Groundwater and Treated Effluent in a Laboratory Model System
,”
Microbiology
1350-0872,
149
, pp.
47
55
.
33.
Evans
,
D. J.
,
Allison
,
D. G.
,
Brown
,
M. R.
, and
Gilbert
,
P.
, 1991, “
Susceptibility of Pseudomonas aeruginosa and Escherichia coli Biofilms Towards Ciprofloxacin: Effect of Specific Growth Rate
,”
J. Antimicrob. Chemother.
0305-7453,
27
, pp.
177
184
.
34.
Heydorn
,
A.
,
Ersbøll
,
B.
,
Kato
,
J.
,
Hentzer
,
M.
,
Parsek
,
M. R.
,
Tolker-Nielsen
,
T.
,
Givskov
,
M.
, and
Molin
,
S.
, 2002, “
Statistical Analysis of Pseudomonas aeruginosa Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-To-Cell Signaling, and Stationary-Phase Sigma Factor Expression
,”
Appl. Environ. Microbiol.
0099-2240,
68
, pp.
2008
2017
.
35.
Delille
,
A.
,
Quilès
,
F.
, and
Humbert
,
F.
, 2007, “
In Situ Monitoring of the Nascent Pseudomonas fluorescens Biofilm Response to Variations in the Dissolved Organic Carbon Level in Low-Nutrient Water by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy
,”
Appl. Environ. Microbiol.
0099-2240,
73
, pp.
5782
5788
.
You do not currently have access to this content.