A statistical design of experiments was used to study the effect of reaction temperature and time on the synthesis of cobalt ferrite nanoparticles by the thermodecomposition method. A 242 factorial experimental design with two central points was used in which the control variables were the time and temperature of the nucleation and growth stages. Transmission electron microscopy, X-ray diffraction, inductively coupled plasma optical emission spectroscopy, and magnetic measurements were used for particle characterization. Cobalt-substituted ferrite (CoxFe3xO4) nanoparticles with diameters between 9 nm and 13 nm were obtained by varying the nucleation temperature between 150°C and 250°C, the growth temperature between 300°C and 330°C, and the time in each stage between 60 min and 120 min. Statistical analysis showed that only the temperatures had an influence on the final particle size. The analysis of variance indicates that increase in the nucleation temperature resulted in decreased particle size, whereas the increase in temperature in the growth stage resulted in an increase in particle size. Additionally, statistical analysis showed that the growth temperature had an effect on Fe/Co ratio. An increase in the growth temperature produces a decrease in the Fe/Co ratio. Finally, a statistically significant correlation was found between particle diameter and saturation magnetization at 5 K and 300 K. No correlation was found between diameter and other magnetic properties.

1.
Hyeon
,
T.
, 2003, “
Chemical Synthesis of Magnetic Nanoparticles
,”
Chem. Commun.
1359-7345,
2003
, pp.
927
934
.
2.
Salazar-Alvarez
,
G.
,
Olsson
,
R. T.
,
Sort
,
J.
,
Macedo
,
W. A.
,
Ardisson
,
J. D.
,
Baro
,
M. D.
,
Gedde
,
U. W.
, and
Nogues
,
J.
, 2007, “
Enhanced Coercivity in Co-Rich Near-Stoichiometric CoxFe3−xO4 Nanoparticles Prepared in Large Batches
,”
Chem. Mater.
0897-4756,
19
, pp.
4957
4963
.
3.
Sharma
,
S. K.
,
Kumar
,
R.
,
Kumar
,
S.
,
Knobel
,
M.
,
Meneses
,
C. T.
,
Siva Kumar
,
V. V.
,
Reddy
,
V. R.
,
Singh
,
M.
, and
Lee
,
C. G.
, 2008, “
Role of Interparticle Interactions on the Magnetic Behavior of Mg0.95Mn0.05Fe2O4 Ferrite Nanoparticles
,”
J. Phys.: Condens. Matter
0953-8984,
20
, p.
235214
.
4.
Calero-Ddelc
,
V.
, and
Rinaldi
,
C.
, 2007, “
Synthesis and Magnetic Characterization of Cobalt-Substituted Ferrite (CoxFe3−xO4) Nanoparticles
,”
J. Magn. Magn. Mater.
0304-8853,
314
, pp.
60
67
.
5.
Arelaro
,
A. D.
,
Lima
, Jr.,
E.
,
Rossi
,
L. M.
,
Kiyohara
,
P. K.
, and
Rechenberg
,
H. R.
, 2008, “
Ion Dependence of Magnetic Anisotropy in MFe2O4 (M=Fe,Co,Mn) Nanoparticles Synthesized by High-Temperature Reaction
,”
J. Magn. Magn. Mater.
0304-8853,
320
, pp.
e335
e338
.
6.
Park
,
J.
,
Lee
,
E.
,
Hwang
,
N. M.
,
Kang
,
M.
,
Kim
,
S. C.
,
Hwang
,
Y.
,
Park
,
J. G.
,
Noh
,
H. J.
,
Kim
,
J. Y.
,
Park
,
J. H.
, and
Hyeon
,
T.
, 2005, “
One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles
,”
Angew. Chem., Int. Ed.
1433-7851,
44
, pp.
2872
2877
.
7.
Niederberger
,
M.
, and
Garnweitner
,
G.
, 2006, “
Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles
,”
Chem.- Eur. J.
0947-6539,
12
, pp.
7282
7302
.
8.
Burda
,
C.
,
Chen
,
X.
,
Narayanan
,
R.
, and
El-Sayed
,
M. A.
, 2005, “
Chemistry and Properties of Nanocrystals of Different Shapes
,”
Chem. Rev.
0009-2665,
105
, pp.
1025
1102
.
9.
Yu
,
W. W.
,
Falkner
,
J. C.
,
Yavuz
,
C. T.
, and
Colvin
,
V. L.
, 2004, “
Synthesis of Monodisperse Iron Oxide Nanocrystals by Thermal Decomposition of Iron Carboxylate Salts
,”
Chem. Commun.
1359-7345,
2004
, pp.
2306
2307
.
10.
Barrera
,
C.
,
Herrera
,
A. P.
, and
Rinaldi
,
C.
, 2009, “
Colloidal Dispersions of Monodisperse Magnetite Nanoparticles Modified With Poly(Ethylene Glycol)
,”
J. Colloid Interface Sci.
0021-9797,
329
, pp.
107
113
.
11.
Park
,
J.
,
An
,
K.
,
Hwang
,
Y.
,
Park
,
J. G.
,
Noh
,
H. J.
,
Kim
,
J. Y.
,
Park
,
J. H.
,
Hwang
,
N. M.
, and
Hyeon
,
T.
, 2004, “
Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals
,”
Nature Mater.
1476-1122,
3
, pp.
891
895
.
12.
Casula
,
M. F.
,
Jun
,
Y.
,
Zazisky
,
D. J.
,
Chan
,
E. M.
,
Corrias
,
A.
, and
Alivisatos
,
A. P.
, 2006, “
The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks
,”
J. Am. Chem. Soc.
0002-7863,
128
, pp.
1675
1682
.
13.
Murray
,
C. B.
,
Sun
,
S.
,
Doyle
,
H.
, and
Betley
,
T.
, 2001, “
Monodisperse 3D Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly Into Nanoparticle Superlattices
,”
MRS Bull.
0883-7694,
12
, pp.
985
991
.
14.
Samia
,
A. C. S.
,
Schlueter
,
J. A.
,
Jiang
,
J. S.
,
Bader
,
S. D.
,
Qin
,
C. J.
, and
Lin
,
X. M.
, 2006, “
Effect of Ligan-Metal Interactions on the Growth of Transition-Metal and Alloy Nanoparticles
,”
Chem. Mater.
0897-4756,
18
, pp.
5203
5212
.
15.
Shevchenko
,
E. V.
,
Talapin
,
D. V.
,
Schnablegger
,
H.
,
Kornowski
,
A.
,
Festin
,
O.
,
Svedlindh
,
P.
,
Hasase
,
M.
, and
Weller
,
H.
, 2003, “
Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals
,”
J. Am. Chem. Soc.
0002-7863,
125
, pp.
9090
9101
.
16.
Chen
,
Y.
,
Luo
,
X.
,
Yue
,
G. H.
,
Luo
,
X.
, and
Peng
,
D. L.
, 2009, “
Synthesis of Iron-Nckel Nanoparticles via a Nonaqueous Organometallic Route
,”
Mater. Chem. Phys.
0254-0584,
113
, pp.
412
416
.
17.
Crouse
,
C. A.
, and
Barron
,
A. R.
, 2008, “
Reagent Control Over the Size, Uniformity, and Composition of Co-Fe-O Nanoparticles
,”
J. Mater. Chem.
0959-9428,
18
, pp.
4146
4153
.
18.
Srivastava
,
C.
,
Nikles
,
D. E.
, and
Thompson
,
G. B.
, 2008, “
Compositional Evolution During the Synthesis of FePt Nanoparticles
,”
J. Appl. Phys.
0021-8979,
104
, p.
064315
.
19.
Shukla
,
N.
,
Svedberg
,
E. B.
,
Ell
,
J.
, and
Roy
,
A. J.
, 2006, “
Surfactant Effects on the Shapes of Cobalt Nanoparticles
,”
Mater. Lett.
0167-577X,
60
, pp.
1950
1955
.
20.
Yin
,
M.
,
Willis
,
A.
,
Redl
,
F.
,
Turro
,
N. J.
, and
O’Brien
,
S. P.
, 2004, “
Influence of Capping Groups on the Synthesis of γ-Fe2O3 Nanocrystals
,”
J. Mater. Res.
0884-2914,
19
(
4
), pp.
1208
1215
.
21.
Leem
,
G.
,
Sarangi
,
S.
,
Zhang
,
S.
,
Rusakova
,
I.
,
Brazdeikis
,
A.
,
Litvinov
,
D.
, and
Lee
,
T. R.
, 2009, “
Surfactant-Controlled Size and Shape Evolution of Magnetic Nanoparticles
,”
Cryst. Growth Des.
1528-7483,
9
, pp.
32
34
.
22.
Lu
,
Y.
,
Lu
,
X.
,
Mayers
,
B. T.
,
Herricks
,
T.
, and
Xia
,
Y.
, 2008, “
Synthesis and Characterization of Magnetic Co Nanoparticles: A Comparison Study of Three Different Capping Surfactants
,”
J. Solid State Chem.
0022-4596,
181
, pp.
1530
1538
.
23.
Kang
,
E.
,
Park
,
J.
,
Hwang
,
Y.
,
Kang
,
M.
,
Park
,
J. G.
, and
Hyeon
,
T.
, 2004, “
Direct Synthesis of Highly Crystalline and Monodisperse Manganese Ferrite Nanocrystals
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
13932
13935
.
24.
Teng
,
X.
, and
Yang
,
H.
, 2004, “
Effects of Surfactants and Synthetic Conditions on the Sizes and Self-Assembly of Monodisperse Iron Oxide Nanoparticles
,”
J. Mater. Chem.
0959-9428,
14
, pp.
774
779
.
25.
Xie
,
J.
,
Peng
,
S.
,
Brower
,
N.
,
Pourmand
,
N.
,
Wang
,
S. X.
, and
Sun
,
S.
, 2006, “
One-Pot Synthesis of Monodisperse Iron Oxide Nanoparticles for Potential Biomedical Applications
,”
Pure Appl. Chem.
0033-4545,
78
(
5
), pp.
1003
1014
.
26.
Roca
,
A. G.
,
Morales
,
M. P.
,
O’Grady
,
K.
, and
Serna
,
C. J.
, 2006, “
Structural and Magnetic Properties of Uniforma Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors
,”
Nanotechnology
0957-4484,
17
, pp.
2783
2788
.
27.
Chaianansutcharit
,
S.
,
Mekasuwandumrong
,
O.
, and
Praserthdam
,
P.
, 2006, “
Effect of Organic Solvents on Iron Oxide Nanoparticles by the Solvothermal Method
,”
Cryst. Growth Des.
1528-7483,
6
(
1
), pp.
40
45
.
28.
Mason
,
R. L.
,
Gunst
,
R. F.
, and
Hess
,
J. L.
, 2003,
Statistical Design and Analysis of Experiments—With Applications to Engineering and Science
,
Wiley
,
Hoboken, NJ
.
29.
Hinkelmann
,
K.
, and
Kempthorne
,
O.
, 2007,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
30.
Sun
,
S.
,
Zeng
,
H.
,
Robinson
,
D. B.
,
Raoux
,
S.
,
Rice
,
P. M.
,
Wang
,
S. X.
, and
Li
,
G.
, 2004, “
Monodisperse MFe2O4 (M=Fe,Co,Mn) Nanoparticles
,”
J. Am. Chem. Soc.
0002-7863,
126
, pp.
273
279
.
31.
Calero-Ddelc
,
V.
,
Rinaldi
,
C.
, and
Zahn
,
M.
, 2006,
Magnetic Fluid and Nanoparticle Based Sensors
,
Encyclopedia of Sensors
,
C. A.
Grimes
,
E. C.
Dickey
, and
M. V.
Pishko
, eds.,
American Scientific
,
Stevenson Ranch, CA
.
32.
Fornara
,
A.
,
Johansson
,
P.
,
Petersson
,
K.
,
Gustafsoon
,
S.
,
Qin
,
J.
,
Olsson
,
E.
,
Ilver
,
D.
,
Krozer
,
A.
,
Muhammed
,
M.
, and
Johansson
,
C.
, 2008, “
Tailored Magnetic Nanoparticles for Direct and Sensitive Detection of Biomolecules in Biological Samples
,”
Nano Lett.
1530-6984,
8
(
10
), pp.
3423
3428
.
33.
Tung
,
L. D.
,
Kolesnichenko
,
V.
,
Caruntu
,
D.
,
Chou
,
N. H.
,
O’Connor
,
C. J.
, and
Spinu
,
L.
, 2003, “
Magnetic Properties of Ultrafine Cobalt Ferrite Particles
,”
J. Appl. Phys.
0021-8979,
93
(
10
), pp.
7486
7488
.
You do not currently have access to this content.