The performance of adhesive bonded subassemblies and vehicle structures strongly depends on not only the properties of the adherends and adhesives but also the gap between the workpieces. An excessive gap between the joined structural elements could result in the joint strength decreased. In this study, a single-sided piercing riveting (SSPR) of workpieces was proposed and analyzed to ensure the part fit-up. The SSPR process has been modeled using the explicit finite element code LS-DYNA. A 3D model including the workpieces, rivet and riveting tools was generated. The model simulates the rivet piercing and deformation of 2 mm thick aluminum alloy AA5052. It was found that rivet speed and rivet leg chamfers are the main factors to influence the gap between the workpieces and consequently the quality of the riveted joints. To minimize the gap between the workpieces and optimizing the joint strength, proper riveting velocity and rivet leg chamfer are recommended.

1.
Tharumarajah
,
A.
, and
Koltun
,
P.
, 2007, “
Is There an Environmental Advantage of Using Magnesium Components for Light-Weighting Cars?
,”
J. Cleaner Prod.
0959-6526,
15
(
11–12
), pp.
1007
1013
.
2.
Merklein
,
M.
, and
Geiger
,
M.
, 2002, “
New Materials and Production Technologies for Innovative Lightweight Constructions
,”
J. Mater. Process. Technol.
0924-0136,
125–126
(
9
), pp.
532
536
.
3.
Pickin
,
C. G.
,
Young
,
K.
, and
Tuersley
,
I.
, 2007, “
Joining of Lightweight Sandwich Sheets to Aluminum Using Self-Pierce Riveting
,”
Mater. Des.
0264-1275,
28
(
8
), pp.
2361
2365
.
4.
Tozaki
,
Y.
,
Uematsu
,
Y.
, and
Tokaji
,
K.
, 2007, “
Effect of Tool Geometry on Microstructure and Static Strength in Friction Stir Spot Welded Aluminum Alloys
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
15
), pp.
2230
2236
.
5.
Schubert
,
E.
,
Klassen
,
M.
,
Zerner
,
I.
,
Walz
,
C.
, and
Sepold
,
G.
, 2001, “
Light-Weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry
,”
J. Mater. Process. Technol.
0924-0136,
115
(
1
), pp.
2
8
.
6.
Wang
,
B.
,
Hao
,
C.
,
Zhang
,
J.
, and
Zhang
,
H.
, 2006, “
A New Self-Piercing Riveting Process and Strength Evaluation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
580
587
.
7.
Haraga
,
K.
,
Taguchi
,
K.
,
Yoda
,
K.
, and
Nakashima
,
Y.
, 2003, “
Assembly Technique for Control Panel Enclosures With The Combined Use of Adhesive and Rivets and the Reduction of Energy Consumption
,”
Int. J. Adhes. Adhes.
0143-7496,
23
(
5
), pp.
371
376
.
8.
Barnes
,
T. A.
, and
Pashby
,
I. R.
, 2000, “
Joining Techniques for Aluminum Spaceframes Used in Automobiles: Part II—Adhesive Bonding and Mechanical Fasteners
,”
J. Mater. Process. Technol.
0924-0136,
99
(
1–3
), pp.
72
79
.
9.
Elbing
,
F.
,
Anagreh
,
N.
,
Dorn
,
L.
, and
Uhlmann
,
E.
, 2003, “
Dry Ice Blasting as Pretreatment of Aluminum Surfaces to Improve the Adhesive Strength of Aluminum Bonding Joints
,”
Int. J. Adhes. Adhes.
0143-7496,
23
(
1
), pp.
69
79
.
10.
Porcaro
,
R.
,
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Aalberg
,
A.
, 2006, “
Self-Piercing Riveting Process: An Experimental and Numerical Investigation
,”
J. Mater. Process. Technol.
0924-0136,
171
, pp.
10
20
.
11.
Porcaro
,
R.
,
Langseth
,
M.
,
Hanssen
,
A. G.
,
Zhao
,
H.
,
Weyer
,
S.
, and
Hooputra
,
H.
, 2008, “
Crashworthiness of Self-Piercing Riveted Connections
,”
Int. J. Impact Eng.
0734-743X,
35
, pp.
1251
1266
.
12.
Han
,
L.
, and
Chrysanthou
,
A.
, 2008, “
Evaluation of Quality and Behavior of Self-Piercing Riveted Aluminum to High Strength Low Alloy Sheets With Different Surface Coatings
,”
Mater. Des.
0264-1275,
29
, pp.
458
468
.
13.
Sun
,
X.
,
Stephens
,
E. V.
, and
Khaleel
,
M. A.
, 2007, “
Fatigue Behaviors of Self-Piercing Rivets Joining Similar and Dissimilar Workpiece metals
,”
Int. J. Fatigue
0142-1123,
29
(
2
), pp.
370
386
.
14.
Cornfield
,
G. C.
, and
Jonhson
,
R. H.
, 1973, “
Theoretical Prediction of Plastic Flow in Hot Rolling Including the Effect of Various Temperature Distribution
,”
J. Iron Steel Inst., London
0021-1567,
211
(
8
), pp.
567
573
.
15.
Lee
,
C. H.
, and
Kobayashi
,
S.
, 1973, “
New Solutions to Rigid Plastic Deformation Problems Using a Matrix Method
,”
ASME J. Eng. Ind.
0022-0817,
95
, pp.
865
873
.
16.
Klocke
,
F.
,
Beck
,
T.
,
Hoppe
,
S.
,
Krieg
,
T.
,
Muller
,
N.
,
Nöthe
,
T.
,
Raedt
,
H. -W.
, and
Sweeney
,
K.
, 2002, “
Examples of FEM Applications in Manufacturing Technology
,”
J. Mater. Process. Technol.
0924-0136,
120
(
1–3
), pp.
450
457
.
17.
Shercliff
,
H. R.
, and
Lovatt
,
A. M.
, 2001, “
Selection of Manufacturing Process in Design and the Role of Process Modeling
,”
Prog. Mater. Sci.
0079-6425,
46
(
3–4
), pp.
429
459
.
18.
Liu
,
Y.
,
Li
,
F.
,
Wang
,
S.
, and
Hu
,
S. J.
, 2006, “
Preform Design of Powder Metallurgy Turbine Disks Using Equi-Potential Line Method
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
677
682
.
19.
Chenot
,
J. L.
, and
Massoni
,
E.
, 2006, “
Finite Element Modeling and Control of New Metal Forming Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
11
), pp.
1194
1200
.
20.
Casalino
,
G.
,
Rotondo
,
A.
, and
Ludovico
,
A.
, 2008, “
On the Numerical Modeling of the Multiphysics Self Piercing Riveting Process Based on the Finite Element Technique
,”
Adv. Eng. Software
0965-9978,
39
, pp.
787
795
.
21.
2006, LS-DYNA User’s Manual: LSDYNA-User-Manual, LS-DYNA-Theory.
22.
ANSYS User’s Manual: ANSYS Element Reference.
You do not currently have access to this content.